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Abstract: In Bayesian disease mapping, one needs to specify a neighborhood structure to make 
inference on the underlying geographical relative risks. We propose a model in which the neigh- 
borhood structure is part of the parameter space. We retain the Markov property of the usual 
Bayesian spatial models: given the neighborhood graph, the disease rates follow a conditional 
autoregressive model. However, the neighborhood graph itself is a parameter that also needs to 
be estimated. We investigate the theoretical properties of our model. In particular, we inves- 
tigate carefully the prior and posterior covariance matrix induced by this random neighborhood 
structure providing interpretation for each element of these matrices. 
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Introduction 

In disease mapping, the Bayesian model proposed by Besag, York and Mollié [7], and 
denoted by BYM, is the most popular choice to estimate relative risks in small areas or to 
evaluate the effects of covariates acting as exposure measurements surrogates. Originally, BYM 
was introduced to model a cross-section of counts collected in a set disjoint geographical areas 
composing a partitioned map. Since then, BYM has been extended into several directions to 
include space-time generalized linear models [26, 27, 19, 33, 29], spatial survival models [10, 21], 
spatially-varying parameters models [1, 2, 12], and generalized additive models [22]. Multivariate 
extensions incorporating two correlated sets of spatial effects have also been proposed in recent 
years [21, 13, 15, 16]. Many of these models can be fit using freely available software such as 
WinBUGS [25] and BayesX [8]. 

BYM is based on a conditional autoregressive (CAR) model for the spatial random effects. 
In the CAR model, spatial dependence is expressed conditionally by requiring that the ran- 
dom effect in a given area, given the values in all other areas, depends only on a small set of 
neighboring values. More specifically, the random effect θi associated with the i-th area is the 
sum ϕi + ψi of two components where ϕi is a spatially structured random effect assigned an 
improper CAR prior distribution, and ψi is a second set of i.i.d. zero-mean normally distributed 
unstructured random effects. This is termed a convolution prior [7] since the density of θi’s will 
be the convolution of the joint densities of ϕi vector and the ψi vector. 

An essential aspect of the BYM model and its extensions is the specification of the neigh- 
borhood structure for the areas. Although this is quite flexible and can be arbitrarily defined, 
in practice, it is typically based only on adjacency relationships. There are few justifications 
for this practice other than its conveniently easy calculation by means of GIS (Geographic in- 
formation system) routines. A related problem with the BYM model is that the neighborhood 
structure determines the smoothing degree used in the relative risks estimation. Some authors 
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noticed its tendency to oversmooth the risks when the usual adjacency neighborhood structure 
is used. Therefore, it would be very useful to have a model that allows for multiple neighborhood 
structure and automatically adapts itself according to the observed data evidence. 

Notwithstanding its crucial role in the spatial Bayesian models, very few studies have consi- 
dered different neighborhood structures for disease mapping problems. One notable exception 
is [26] where the authors considered a model for disease rates with spatial effects structured at 
two geographical levels. They used infant mortality data over the period 1985-1994 from the 
province of British Columbia (BC) in Canada. The areas were organized in 21 health units and 
their sub-divisions, 79 local health areas. Health units (HUs) are administrative health divisions 
overseeing the functioning of the health sub-units, the local health areas (LHAs). Therefore, it 
was natural to expect that LHAs within the same HUs should share many health service and 
care characteristics beyond those determined by factors that vary smoothly in space. Hence, 
they assumed a random effect shared by all LHAs within the same HU. They also considered a 
neighborhood structure in which two LHAs are considered neighbors if they share boundaries 
or if there is a third LHA sharing boundaries with both local health areas. This second-order 
neighborhood structure is less usual and it reminds the higher autoregressive order models in 
the time series setting. 

A more recent reference is [35], who introduced a stochastic neighborhood CAR model where 
the selection of the neighborhood depends on unknown parameters. They estimate how far 
should the neighborhood of the areas be assuming proximity weights that stay constant and 
equal to 1 up to a certain distance and thereafter decreases exponentially towards zero. In 
contrast with most of the published applied papers in disease mapping, they base their model 
in the proper CAR model rather than BYM. Most people prefer to use BYM, implying in an 
improper CAR model to deal with the spatial random effects, because the proper CAR model 
induces little marginal correlation between neighboring areas (See [4] and [3]). 

These studies consider only locally larger neighborhoods than the first order neighborhood 
provided by the simple adjacency between the areas. Although in some situations a local neigh- 
borhood will be enough to deal with the spatial effects, we feel that spatial models should span 
a larger range of possibilities. Fundamentally, BYM and its variations consider the random 
effects being composed of either unstructured over-dispersion or small range spatial conditio- 
nal variation. These are two extremes models and allowing for intermediate situations will be 
useful in some applications. We will show examples where the typical adjacency neighborhood 
structure is not sufficient to estimate the underlying risks, providing less smooth estimates than 
what should be inferred from the data. Our purpose is to introduce spatial effects with longer 
range than the immediate geographical neighborhood. This is likely to be useful specially in 
situations where the underlying risk changes so smoothly over larger regions as to be considered 
indistinguishable from a random constant value for all areas within it. 

In this work, we investigate more flexible spatial conditional autoregressive models in terms 
of the neighborhood structure. We propose a model in which the neighborhood structure is part 
of the parameter space. We retain the same Markov property that is part of most Bayesian 
spatial models. That is, the disease rates follow a conditional autoregressive model, given the 
neighborhood graph. However, the neighborhood graph itself is a parameter that also needs 
to be estimated. The methodology described herein permits arbitrary neighborhood extension 
for incorporating spatial random effects. It provides a simple mechanism for identifying the 
geographical extent of the conditional influence of neighboring areas. 

The manuscript is organized as follows. In Section , we introduce the notation and present 
some models that were proposed previously. In section present the definition our model. In 
Section , we investigate the theoretical properties of the model. In particular, we carefully 
study the prior and posterior covariance matrix induced by this random neighborhood structure 
providing interpretation for each element of these matrices. We also present, in section , a specific 
and simpler case of our model allowing for a more thorough understanding of the covariance 
structure. In Section , we illustrate the use of our model for disease mapping. We end in Section 
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presenting the main conclusions. 
 
Disease Mapping 

A Bayesian hierarchical model is one of the main tools to make inference on the underlying 
relative risks of a disease observed into disjoint geographical areas of a map. These models can 
be described in this way: suppose that we have N geographic areas and each of them has a 
relative risk ψi  for i = 1, ..., N , that needs to be estimated.  The Bayesian inference is based 
on the posterior distribution of ψ = (ψ1, ..., ψN ) given by f (ψ|y1, ..., yN ) = l(y1, ..., yN |ψ)f (ψ), 
where l(y1, ..., yN |ψ) is the likelihood function and f (ψ) is the prior distribution of the para- 
meters vector ψ. Conditionally on the values ψ1, ..., ψN , the values Y1, ..., YN are supposed to 
be independent with a Poisson distribution with mean ψiEi, where Ei is the expected value of 
cases under the hypotheses of constant relative risk over the areas. The modeling of the prior 
distribution f (ψ) allows the introduction of spatial dependence between the risks such that close 
regions tend to have similar relative risks. This dependence appears as a Markovian structure 
in which the value ψi of one area, conditionally on all other areas values, depends only upon the 
ψj ’s values of its neighbors. 

More specifically, the relative risk ψi is written as 

log(ψi) = µ + bi (1) 

where µ is the general level of the relative risk and bi is the random effect of the i-th area. One 
simple possibility is to assume that the random effects bi are independent and identically distri- 
buted with a normal distribution N (0, σ2). In this case, there will be no spatial effects imposed 
on the relative risks and the posterior distribution of ψ will reflect this independence. However, 
one typically anticipates a spatial dependence between the relative risks due to environmental 
and genetic similarities of neighboring areas. The most popular distribution to reflect the spa- 
tial structure of the data in the prior distribution was introduced by [7]. They decomposed the 
random effect bi into two parts, a non-spatially-structured component and a spatially structured 
component: 

log(ψi) = µ + θi + ϕi 

where θ1, . . . , θn are the non-structured errors, independently and identically distributed accor- 
ding to a normal distribution. The random effects ϕi have a spatially structured prior distribu- 
tion with intrinsic CAR (ICAR) distribution. The ICAR prior distribution is an improper prior 
with a Markovian structure. The distribution of ϕi, conditional on all the other values ϕj  for 
j ̸= i, is given by 

( 
¯ σ

2 ) 
ϕi|ϕ−i ∼ N ϕi, 

i 
(2) 

where ϕ̄i is the mean of the i-th area neighboring values ϕj . 
This model presents some identifiability problems of the spatial and non-spatial effects, as 

noticed by [9]. To fix this problem, [24] presented an alternative, including a parameter λ which 
is able to measure the effect of each component. This parameter measures the level of spatial 
correlation among the areas. In addition to this, it is included a parameter σ2 to measure the 
random effect variance. He proposed a multivariate normal distribution for the random effects 
b = (b1, . . . , bN ) in (1) with the following precision matrix 

Q = (σ2)−1 ((1 − λ)I + λR) (3) 

where I is the identity matrix and R is the precision matrix of the ICAR model, which means 
that 

   
ni if i = j 

Rij = 
 

−1 if j ∼ j  0  otherwise 
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where ni is the number of neighbors of site i and i ∼ j means i neighbor of j. For this model, 
the parameter λ assumes values in the interval [0, 1], and hence, the precision matrix Q is a 
weighted sum of the I and R matrices. 

Another spatial mixture model was proposed by [23]. Spatial discontinuities in the risk 
surface can be over smoothed by the BYM and Leroux models and hence they suggested the 
addition of another spatial effects component (w1, . . . , wN ). This additional component uses the 
absolute differences |wi − wj|, rather than squared differences (wi − wj )2, between neighboring 
areas in the prior density: 

 
  1   

  
  1  ∑ 

π(w1, . . . , wN |λ) ∝ √
λ 

exp −√
λ
 

 
i∼j 

|wi − wj| . (4) 

 

The relative risks are the sum of the unstructured component θi  and a mixture of the usual 
spatial components ϕi given in (2) and the prior in (4): 

log(ψi) = µ + θi + piϕi + (1 − pi)wi 

where p1, . . . , pN are i.i.d with Beta(α, α) distribution. 
The BYM and Leroux models represent a mixing of two extreme situations. One situation 

considers a conditional dependence only on the immediate neighbors represented by the single 
neighborhood structure while the other situation represents the complete independence between 
the random effects. Both models consider that, if we have information on the immediate neigh- 
bors, no additional information about the other areas is necessary to make inference on the 
random effects. We think that in many practical situations this is too restrictive. Consider, for 
example, another extreme but possible situation in which the distribution of bi (and hence, of 
ψi) in a given area, conditional on the rest of the map, should depend upon all the other sites, 
not only on the immediate neighbors. In this case, all areas are neighboring areas of all other 
areas. This can be a reasonable model when the region under study is small enough such that the 
economic, social and environmental characteristics are approximately constant over the entire 
region. This implies a certain exchangeability between the areas and therefore an all-inclusive 
dependence between the areas’ pairs. Every area gives incremental additional information on a 
fixed area value, even if conditioning on all the other areas. 

 
Model definition 

We propose a model that expands the single neighborhood structure of BYM and Leroux 
models to a larger class that has geographically increasing orders of neighborhood extension. 
Through Bayesian updating, we can make inference about the more appropriate neighborhood 
structure underlying the observed data. More specifically, we extend the weighted sum precision 
matrix (3) by including matrices that represent neighborhoods of all possible orders in the simple 
adjacency graph. 

Let each area i be a node or site of a graph and connect two nodes by one edge if they share 
boundaries. Let A be the n × n binary adjacency matrix where Aij = 1 if i and j are connected 
by one edge, and Aij = 0 otherwise. We say that i is a l-th order neighbor of j if the (i, j)-th 
element of the power matrix Al  is greater than zero and As = 0, for s < l and l ≥ 1.  The 
maximum neighborhood order is given by the diameter of the graph, which is the longest path 
among all the shortest paths that connect two sites.  In other words, it counts the minimum 
number of steps necessary to leave a site and go to any other site in the graph. 

In our model, the vector b = (b1, . . . , bN ) in (1) has a multivariate normal distribution with 
mean zero and precision matrix given by: 

Q = (σ2)−1 
(
λ1I + λ2R(1) + λ3R(2) + .... + λk+1R(k)

)
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ij  = (l) 

i i 

i i 

i 

 i 

 

i j 

i 

where λ1 + λ2 + ... + λk+1 = 1 and λi ≥ 0 for all i. The integer k is the diameter of the graph 
and R(l) is the graph Laplacian that includes neighborhoods up to order l. That is,  

(l) 

R(l) 
 ni if i = j 

−1 if j ∈ ∂i  0 otherwise 
 

where n(l)
 is the number of neighbors of site i up to order l and ∂(l)

 is the set of neighbors 
of area i, from order 1 up to order l.  Notice that, we are considering that the neighborhood 

(l) (l) 
relationship is symmetric, that is, j ∈ ∂i if, and only if, i ∈ ∂j   . It is important to point out 
that these matrices are linearly independent, ensuring the parameters identifiability. 

This matrix is positive definite, as it satisfies the sufficient condition of being diagonal do- 
minant. That is, for all i = 1, . . . , n 

 
 
 

because 

N 

Qii > 
∑ 

|Qij| 
j=1 

N N 
Qii = λ1 + λ2n(2) + λ3n(3) + ... + λk+1n(k) = λ1 + 

∑ 
|Qij| > 

∑ 
|Qij| 

i i i 
j=1 j=1 

 

as λ1 ∈ (0, 1), and, therefore, Q can be a precision matrix. 
From the precision matrix, it is possible to obtain the conditional distribution bi|b−i of each 

area given the vector b−i = (b1, . . . , bi−1, bi+1, . . . , bn). It is a normal distribution with mean 
f (b, λ) and variance g(b, λ) given by 

 

λ2n(1)b̄(1) (2) (2) (k)¯(k) 

f (b, λ) = i i + λ3ni   b̄i + . . . + λk+1ni    bi 

 

and 

 
 

g(b, λ) = 

λ1 + λ2n(1)
 + λ3n(2) 

 

σ2 

+ ... + λk+1n (k) 
i 

λ1 + λ2n(1) + λ3n(2) + ... + λk+1n(k)
 

i i i 

where ̄b(l) is the mean of neighbors of site i up to order l. The conditional expectation is a convex 
linear combination of the means of its neighbors of all possible orders and the conditional variance 
is inversely proportional to the number of neighbors of each of these orders multiplied by their 
respective weight λl. 

Let the (n − 2) dimensional b−ij  be the vector b without its i − th and j − th coordinates. 
It can be shown that the conditional correlation between the areas, Corr(bi, bj|b−ij ) is given by 

 
(1) 

λ2 + λ3 + . . . + λk if j ∈ ∂  (2) (1) 

Corr(bi, bj|b−ij ) ∝ 
 λ3 + . . . + λk if j ∈ ∂i − ∂i 

. . 
 . 
 λk if j ∈ ∂(k) − ∪k−1 ∂(l) 

 

with the proportionality constant given by the inverse of 

i l=1 i 

 

k 

∑ 
λln(l−1) 

l=1 

k 

∑ 
λln(l−1) 

l=1 
 

and with n(0) ≡ 1 by definition, for all i = 1, . . . , N . This shows that the conditional correlation 
between the areas decreases with the neighborhood order l.  For example, if a pair of sites 
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i 

 
i i 

 i 

 
i i 

 

i 

i 

 

  

 

2 
 

 

 

are third order neighbors, the conditional correlation between them will be smaller than that 
between two first order neighbors. Notice also that, if all the λl are positive, then the conditional 
correlation between any pair of areas is different from zero. 

We can also write the joint distribution in a more interpretable way: 
       1     ∑ 

2 

 
(k) 

∑  ∑ 

f (b)    ∝   exp − 
2σ 


 

 i 
bi (λ1 + ... + λk+1ni   ) − λ2  

i j:j∈∂(1)
 

 
 

bibj 

−λ3 

∑
 

i 

∑ 
 

(2) 

j:j∈∂i 

bibj − ... − λk+1 

∑
 

i 

∑ 
 

(k) 

j:j∈∂i 

bibj 
  

 
      1 ∑ 

2 2λ2 
∑  ∑ 

2
 2λk+1 

∑  ∑ 
2 

=   exp — 
2σ 

 2 

λ1
 bi +  2 

i 
 

i j:j∈∂(1)
 

bi + . . . + 2 bi 
i j:j∈∂(k)

 

 
 2λ2 

∑ 
  2 

i 
  

 
∑ 

 
(1) 

j:j∈∂i 
 

 

bibj + ... + 2λk+1 
∑ 

 

2 
i 

 
∑ 

 
(k) 

j:j∈∂i 

 
 

bibj 
  

 

 
 
 

 
 

=   exp 

     1     
∑ 

− 
2
 

λ2 λ1b + 
∑ 

(bi − bj )2
 
 
+ . . . + λk+1 

∑ 
(bi − bj )2   . 

   2σ    
i  

 2 
j:j∈∂(1)

 

2 
j:j∈∂(k)

 

If λl = 0 for all l > 1, we are in the case of independent normal distributions. We can interpret 
the term associated with λl as a penalization for configurations showing too much variation 
among l-th order neighbors. The larger the value of λl, the smoother is the spatial pattern up 
to neighborhood order l. 

This distribution can also be written as 

( { 
1
 

})λ1 

 
∑ 

2
 

 
 1   ∑ ∑ 

λ2
 

 
2 

f (b) ∝ exp − 2σ2 bi 
i 

exp  
− 

4σ2 
 

 
i   j:j∈∂(l)

 

(bi — bj ) 
 


 

 
... 

 
exp 
 

 
 1

 − 
4σ2 

 

 

∑ ∑ 
 

i   j:j∈∂(l)
 

 

(bi − bj ) 

λk 
 

2  


 

 

which is a geometric mixture of normal distributions. 
To complete the model specification, one needs to adopt prior distributions for the weights 

(λ1, . . . , λk ) and for the hyperparameter σ2. In our applications, we assumed an inverse Gamma 
prior distribution for σ2 and a uniform distribution on the k-dimensional simplex with the 
restriction that the λl > 0 and that they add to 1. 

 
Model properties 

To gain a better understanding of the prior and posterior distribution properties, we obtain its 
marginal covariance matrix in addition to the conditional correlation given earlier. To avoid a 
cumbersome notation and long formulas, we will consider the model that includes three different 
values for λl, one corresponding to λ1 (associated with the individual areas and the independent 
case), another corresponding to λ2 (associated with pairs of adjacent areas), and the third one, 
λ3, corresponding to the highest possible order k, associated with a complete graph, where every 
area is neighbor of every other area. The extension to the general case is straightforward. 

Considering only three components, our precision matrix reduces to 

Q = (σ2)−1 
(
λ1I + λ2R(1) + λ3R(k)

) 
(5) 

− 
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( )−1 −1 

2 

    

2 

where R(1) is the precision matrix of the ICAR model and R(k) is given by 

R(k) = diag(N) − 11T 

where N = N 1 with N being the total number of areas in the map and 1 denotes a N -dimensional 
vector of ones. The precision matrix in (5) can be rewritten as 

Q = (σ2)−1 
(
λ1I + λ2diag(n) + λ3diag(N) − λ2A − λ311T ) 

where A is the binary adjacency matrix and A1 = n = (n1, . . . , nN ) is the vector which has the 
number of adjacent neighbors of each area. The following Theorem shows what is the inverse of 
this precision matrix. 

Using the definitions of A, N and n, the inverse of the precision matrix 

Q = (σ2)−1 
(
λ1I + λ2diag(n) + λ3diag(N) − λ2A − λ311T ) 

 

is given by 

Q−1 = σ2M−1 + σ λ3 
 

[S1+ 
 
S2+ 

 
. . . SN + 

 
]T [S1+ 

 
S2+ 

 
... SN + 

 
] (6) 

1 − λ3 
∑

ij mij 

where Sl+ = 
∑

j mlj = 
∑

i mil and M = λ1I + λ2diag(n) + λ3diag(N) − λ2A. 
Proof.: 
From matrix algebra, we know that 

 

P + uvT = P−1 − P uvT P−1 
 

(7) 
1 + vT P−1u 

if P is an invertible matrix and u and v are vectors with the same dimension. Let M = 
λ1I + λ2diag(n) + λ3diag(N) − λ2A and denote by mij the ij-th element of M−1. Using the 
result (7), we have that the covariance matrix Q−1 is given by 

 

Q−1 =   σ2 
( 

M−1 + λ3 
M−111T M−1 ) 

1 − λ31M−11T 
 ∑

j m1j 
∑

i mi1 ... 
∑

j m1j 
∑

i miN 


 
2 . 

=   σ2M−1 + 
σ λ3 

 
. 


 

1 − λ3 
∑

i,j mij   
∑ . 

j mNj 
∑

i mi1 ... 
∑

j mNj 

  
∑

i miN 
 

As the matrix M is symmetric, M−1 is also symmetric and therefore, for all l = 1, ..., N , 
∑ 

mlj = 
∑ 

mil . 
j i 

 

Let Sl+ = 
∑

j mlj = 
∑

i mil. We can write the covariance matrix as 
 

Q−1 = σ2M−1 + σ λ3 [S1+ 
 
S2+ 

 
. . . SN + ]T [S1+ 

 
S2+ 

 
... SN + 

 
] . (8) 

1 − λ3 
∑

ij mij 
 

To understand this covariance matrix, we consider initially the matrix M−1 by following the 
analytical approach adopted by [3]. We can write 

M−1 = M−1 [λ1I + λ2diag(n) + λ3diag(N)] [λ1I + λ2diag(n) + λ3diag(N)]−1
 

=   [I − λ2TA]−1 T 
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2 

2 2 

ij 

2 

ij 

p(l) 

l 2 ij 

2 

ij 

where  
T = diag 

{ 
1

 

λ1 + λ2n1 + λ3N 

 
, . . . , 1 

} 
. 

λ1 + λ2nN + λ3N 

The following theorem shows the matrix [I − λ2TA]−1 presents an interpretable format. 
Using the definitions of T, A and λ2, consider the matrix 

[I − λ2TA]−1
 

this inverse matrix can be written as a series as follows: 
 

 
 

Proof¿: 

[I − λ2TA]−1 = 
[
I + λ2(TA) + + . . .

] 
T 

A well known linear algebra result [18] states that, if P is a square matrix and each of the 
terms of the power matrix Pk tends to zero as k increases, then the inverse (I − P)−1 exists and 
it is given by 

(I − P)−1 = I + P + P2 + P3 + . . . 
To use this result with the matrix [I − λ2TA]−1, we need to show that the terms λl [(TA)l]ij of 
the power matrix approximate zero when the power l increases. This will be done finding an 
upper bound. Consider initially l = 2. We see that 

 

λ2 
[
(TA)2] 

N 

=  λ2 
∑

 
k=1 

N 

aikakj 

(λ1 + λ2ni + λ3N )(λ1 + λ2nk + λ3N ) 

=   λ2 
∑ aikakj /(nink )   

2 
k=1 (λ1/ni + λ2 + λ3N/ni)(λ1/nk + λ2 + λ3N/nk ) 

λ2 N 
N    a a 

<  2 
∑ ∑ ik   kj , 

(λ1/N + λ2 + λ3)2
 ni  nk 
k=1 k=1 

 

since ni  ≤ N .  As diag(1/n)A is an stochastic matrix, it can be seen as a transition matrix of 
a random walk on the map with equal probabilities of jumping from a given area to any of its 
first-order neighbors. In this way, the second term in the multiplication is the probability that 
a random walk leaves site i and reaches site j in two steps and will be denoted by p(2). 

For an arbitrary l ≥ 2, we have 

λl 
[
(TA)l

]
 
ij 

 
( 

λ2
 

< 
λ1/N + λ2 + λ3 

 

 
l 

(l) 
ij 

 

where p(l) denotes the probability that the random walk goes from i to j in l steps. Therefore, 

ij  ∈ [0, 1] and since λ2/(λ1/N + λ2 + λ3) < 1, we have that 
( 

λ2 
)l 

0 ≤ lim λl 
[
(TA)l

]
 

→∞ ij 
< lim 

l→∞ λ1/N + λ2 + λ3 
p(l) = 0 . 

This shows that the terms of the matrix λl [(TA)l] tends to zero as l goes to infinity and the 
matrix expansion is valid. 

The  elements  
[
(TA)lT

]
 

 
of the the l-th matrix in this expansion are weighted sums of all 

possible paths of length l starting at the i-th site and ending at the j-th site. For example, the 
three first matrices have elements equal to 

[(TA)T]ij = 
(λ

 
 
 
+ λ2ni 

 
aij 

+ λ3N )(λ1 

 
 

+ λ2nj 

 
 
+ λ3N ) 

p 
) 

ij 

1 

λ2(TA)2 + λ3(TA)3
 

2  2  
 

99  



ij 

2 

2 

ij 

ij 

a a a 

a a a a 

a a a a a a 

ij 

[
(TA)2T

]
 

N 

= 
∑ 
k=1 

aikakj 
(λ1 + λ2ni + λ3N )(λ1 + λ2nk + λ3N )(λ1 + λ2nj + λ3N ) 

N   N 
[
(TA)3T

]
 

= 
∑ ∑ 
l=1 k=1 

aikaklalj . 
(λ1 + λ2ni + λ3N )(λ1 + λ2nk + λ3N )(λ1 + λ2nl + λ3N )(λ1 + λ2nj + λ3N ) 

Considering the second matrix for illustration, the element 
[
(TA)2T

]
 counts all paths i → 

k → j giving a weight inversely proportional to the number of immediate neighbors ni, nk , and 
nj the areas have. Going from i to j through a highly connected area has a smaller contribution 
to M−1 than if the path goes through a poorly connected intermediate area. This shows that 
two areas in a region of the map with highly connected areas will tend to be less correlated than 
two areas in a region where the areas has few immediate neighbors. 

To complete the understanding of the covariance matrix Q−1 in (6), we consider now the 
value Si+. We have 

 
Si+ = 

N ∑ 
mij 

j=1 

N ∞ 

= 
∑ ∑ 

λk 
[
(TA)kT

]
 
ij 

j=1 k=0 

∞ N 

=  
∑ 
λk 

∑ [
(TA)kT

] 
. 

ij 
k=0 j=1 

where we interchange the order of the terms because the sum is absolutely convergent. This 
quantity is a weighted sum of all paths leaving site i, the weight decreasing with the path length 
k. It is inversely related to the average degree of connectivity that area i has with the other 
areas in the graph. It is a value associated with the individual area, not with specific pairs of 
areas. 

In summary, the covariance Cov(bi, bj ) = Q−1 is the sum of two components. The first one 
is M−1 and represents a weighted sum of all paths from i to j with weights inversely related to 
their length and to the connectivity of the areas in the path. The second component is given by 
the product of Si+S+j  where Si+ is a score associated with the average connectivity of area i 
to the other areas in the map. The first component is influenced by the neighborhood structure 
through a weighted counting of each path from i to j. The second component is also influenced 
by the neighborhood structure but it considers only a marginal structure. Its presence in the 
covariance matrix position (i, j) is by means of the product of these marginal values associated 
with the individual areas. Tho following interpretation of these terms show how they reflect the 
kind of structure that was defined in the model. 

We can write Si+S+j in a different way, in order to see how they reflect the structure of 
a complete graph. To make this interpretation easier to be understood, we will leave out the 
weights the multiply the terms of the adjacency matrix. We will consider just the terms aij , 
which are one if i and j are neighbors and zero otherwise. Therefore we have an approximation 
for Si+ that is given by 

 
N 

Si+ ≈ 
∑ 

mij = 
j=1 

( ∞ ) ∑ 
(k) 
i1 

k=0 

( ∞ ) ∑ 
(k) 
i2 

k=0 

+ · · · + 
( ∞ ) ∑ 

(k) 
iN 

k=0 

So we see that  

Si+S+j ≈ 

 

[( ∞ ) ∑ 
(k) 

i1 
k=0 

 

+ · · · + 

 
( ∞ 
∑ 

(k) 

iN 
k=0 

 

)] [( ∞ ) ∑ 
(k) 

1j 
k=0 

 

+ · · · + 

 
( ∞ )] 
∑ 

(k) 

Nj 
k=0 

[( ∞ ∑ 
(k) 

i1 
k=0 

) ( ∞ ) ∑ 
(k) 

1j 
k=0 

+ · · · + 
( ∞ ∑ 

(k) 

iN 
k=0 

) ( ∞ )] ∑ 
(k) 

Nj 
k=0 

+ 
∑ 
l̸=m 

[( ∞ ∑ 
(k) 

il 
k=0 

) ( ∞ )] ∑ 
(k) 
mj 

k=0 

   
A
 ..     

B
   .. 

ij 

ij 

+ 

= 
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a a a a a a 

a a a a a 

Lets analyze first term A. We can see that we will have in this sum the following term 
 

a(0) (0) (0) (0) 

i1  a1i    + · · · + aiN a2N 

and this components are all equal to 1, so their sum is equal to N . 
We will also have terms of this kind 

 
a(0) (1) (0) (1) 

i1  a1i    + · · · + aiN a2N 

a(1) (0) (1) (0) 

i1  a1i    + · · · + aiN a2N 

and both of them count the possible ways of going from i to j in one step. If we consider the 
terms whose exponents sum up two, we have 

 
a(0) (2) (0) (2) 

i1  a1i    + · · · + aiN a2N 

a(1) (1) (1) (1) 

i1  a1i    + · · · + aiN a2N 

a(2) (0) (2) (0) 

i1  a1i    + · · · + aiN a2N 

Each of these three terms counts the number of paths that go from i to j in 2 steps. In 
general, what we see is that if we take the terms whose exponent sum up k, we will have terms 
of the kind 

 
a(0) (k) (0) (k) 

i1  a1i    + · · · + aiN a2N 

a(1) (k−1) (1) (k−1) 

i1   a1i + · · · + aiN a2N 

...
 

a(k) (0) (k) (0) 

i1  a1i    + · · · + aiN a2N 

This means that the paths that go from i to j in k steps are counted k + 1 times. Therefore 
the term A can be written as 

 
∞ 

N + 
∑ 

(number of paths from i to j in n steps) (n + 1) . 
n=1 

Now we analyze the format of term B. We can see that 
 
 

N 
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− 

To see what this sum is counting lets consider first the terms for which l = 1 and m = 2. In the 
same way that we did for the term A, we will analyze first the multiplication whose exponents 
sum up one. 

 [
a(0) (1)

] 
+ 

[
a(1) (0)

] 
i1  + a2j i1  + a2j 

 

These represent twice the paths that go from i to j in two steps and have to pass in the edge 
1-2. If this edge already existis in the graph, this is just one of its possible paths. However, if 
this edge does not exist, it is like that we are including a new one in the graph and counting 
other paths that were not considered before. 

Lets know consider the multiplications whose exponents sum up two. 
 [

a(0) (2)
] 
+ 

[
a(1) (1)

] 
+ 

[
a(2) (0)

] 
i1  + a2j i1  + a2j i1  + a2j 

 

We see that they represent three times the number of paths of three steps that go from i to 
j and pass in the edge 1-2. 

In general, for the terms whose exponent sum up k, we will count k times the number of 
possible paths of k steps from i to j and that have to pass in edge 1-2. 

We just considered here the pair of sites 1 and 2, but the sum is over all possible pairs of 
sites. Therefore, the term B can be written in this way 

 
∞ ∑ ∑
(k + 1) (number of paths of n steps from i to j that pass in edge k-l) . 

k̸=l n=0 

This means that it counts all possible paths in the graph considering that all possible edges 
in the graph, in fact, exist. In other words, it counts all possible paths in a complete graph. 

 
Posterior Covariance Matrix 

More relevant to the Bayesian data analysis is the posterior covariance implied by our prior 
spatial model. To obtain analytical expressions, assume that yi can be approximated by a 
normal distribution with variance 1/τy . The posterior precision matrix is given by 

 

Q∗ = τy I + Q = τy + 
(
σ2

)−
 λ1I + λ2diag(n) + λ3diag(N) − λ2A − λ311T ] 

 

and therefore, the covariance matrix is 
 

Q∗−1 = M∗−1 + 

 
where 

 
(
σ−2λ3

) 
(M∗)−1 (11T ) (M∗)−1

 
. 

1 − (σ−2λ3) 1T (M∗)−1 1 
( 

λ1 
) 

λ2 λ3 λ2 

M∗ = τy + σ2 
I + diag(n) + diag(N) A 

σ2 σ2 σ2 

It is rather surprising that it is possible to interpret each one of the two component matri- 
ces of the covariance Q∗−1. Considering initially (M∗)−1, after some algebraic manipulations 
analogous to those carried out earlier for the prior covariance matrix, we have that 

M∗−1 = [I − (τyλ3) T∗A]−1 T∗ 
 

where  

T∗ = diag 

 

{ 
1

 
τy + σ−2 (λ1 + λ2n1 + λ3N ) 

 
 
, . . . , 

 

1 
} 

. 
τy + σ−2 (λ1 + λ2nN + λ3N ) 

1 [ 

102  



 

ij l+ m m 

 .  
. 

. 

. 

 

= j = i 

The elements of this diagonal matrix involve the data precision τy and the weights of the prior 
covariance σ−2 (λ1 + λ2nN  + λ3N ). The relevance of each of these parts on the posterior cova- 
riance will depend on the ratio between the variance of the observations and the prior variance. 

The same matrix expansion that was used earlier can be applied here. Thus we have 

M∗−1 = T∗ + 
(
σ−2λ2

) 
T∗AT∗ + 

(
σ−2λ2

)
 (T∗A)2 T∗ + 

(
σ−2λ2

)
 (T∗A)3 T∗ + . . . 

As a result, the posterior covariance matrix Q∗−1 has the same structure as the prior covariance 
matrix, being written as sum of two matrices: 

 (
S∗

 )2 S∗ ∗ ∗ ∗   
 

1+    . 1+S2+ ...  S1+SN +  

σ−2λ3 

  
1 − σ−2λ3 

∑
i,j S∗    

ij   
 

2 
 

S∗ ∗ ∗ ∗ ∗ 

and 
N +S1+ SN +S2+ ... 

(
SN +

)
 

 
m∗ ∗ ∗   

11 m12 ... m1N 
  .  
  .   
  
m∗ ∗ ∗ 

 

where m∗ 

N 1 mN 2 ...   mNN 

is the (i, j)-th element of the matrix M∗−1  and S∗ ∑ ∗ 
lj 

∑ ∗ 
il 

Therefore the posterior covariance matrix can be interpreted in the same way as the prior 
covariance matrix. The only difference here are the weights appearing in the counts of the 
possible paths between pairs of areas. While they were equal to (λ1 + λ2ni + λ3N )−1 for the 
prior, they are now equal to σ2/ 

(
τy + σ2 (λ1 + λ2ni + λ3N )

)
. This means that, as the prior 

covariance, the posterior covariance can be decomposed into two components reflecting different 
aspects of the neighborhood graph. One component is a weighted average of all paths connecting 
areas i and j, longer paths having smaller weights than shorter ones. Additionally, the paths are 
weighted according to the connection degree of the intervening areas in the path, more connected 
paths having less weights. The other component of [Q∗−1]ij reflects intrinsic aspects of the pair 
of areas i and j. It does not matter where they are located with respect to each other, this 
covariance component is simply a product of scores specific to each area and, in this sense, has 
less spatial content than the first component. 

 
The specific case of two components 

We consider briefly a specific case in which the inversion of the prior and posterior covariance 
matrices are feasible and allow an easier interpretation of the covariance matrix. Suppose that, 
a priori, the area-specific values bi follows a multivariate normal distribution with mean zero 
and precision matrix 

1 
Q = σ2 

(
(1 − λ)I + λ 

(
N I − 11T )) . 

where λ ∈ (0, 1).  Compared with Leroux model in (3), this model exchanges the first order 
neighborhood matrix R of Leroux’s model by the matrix associated with the exchangeable risks 
model of [5]. 

Using (7), we can calculate the covariance matrix: 

Q−1 = σ 
[ 

λ
 

I + 
1 − λ 

] 
11T . 

and the correlation Corr(bi, bj ) = λ. The correlation approaches 1 as the weight of the exchan- 
geable model increases. 

2 3 

2 

103  



Tabela 1: DIC criterion for North Carolina data base using Gamma(0.5, 0.0005) (first row) and 
Gamma(0.01, 0.01) (second row). 

 
Prior All comp Three components Leroux BYM 

Gamma(0.5, 0.0005) 439.51 438.92 439.94 439.28 
Gamma(0.01, 0.01) 438.74 438.58 439.25 440.52 

 
 

We can also find the posterior covariance matrix, if we assume that the data are normally 
distributed with variance (τy )−1. In this case, the posterior correlation of the random effects of 
areas i and j is given by 

Corr(bi, bj|y) = 
y 

λ 
+ (σ2)−1(1 − λ) 

This correlation is close to zero if λ is also close to zero. In the opposite direction, to get 
correlation close to 1, we need to have λ close to 1 and also the ratio (σ2)τy between prior 
and likelihood variances close to one. That is, we need an exchangeable component with large 
relative weight and, at the same time, the underlying risks should have a variation similar to 
the likelihood variance. 

 
Illustrative application 

In this section we will consider the analysis of the spatial incidence of sudden infant death 
syndrome (SIDS) in the 100 counties of the North Carolina state for the period 1999-2006. 
The spatial pattern of this disease in the period 1974 to 1984 has been previously analyzed 
by [34, 11, 20, 23], and this early data set is part of many spatial statistics software manuals. 
Spatial analysis of the underlying risk could hints on unknown risk factors. Indeed there have 
been found spatial variation of the relative risk with an increasing trend from west to east in the 
whole U.S.A. According to the National Center for Health Statistics, the US SIDS incidence rate 
(per thousand live births) has been decreasing steadily from 1.53 in 1980 to 0.51 in 2005. The 
southern region presents the highest rates and, in the period 1999 to 2006, the North Carolina 
rate was 0.73 cases per thousand live births. 

We fitted all models using the software WinBUGS [25] to obtain the posterior distribution 
of the relative risks. Taking all possible neighborhood matrices R(l), we have l varying from 1 
to 19. We considered also the particular three-components model, which uses only the identity 
matrix, the first order neighborhood matrix, and the the matrix 11T .  We adopted a gamma 
distribution with parameters equal to 0.5 and 0.0005 for all inverse variance parameters and 
a uniform distribution on the l-dimensional simplex for the weights (λ1, . . . , λl).  We ran the 
Markov chain Monte Carlo (MCMC) chains for 30,000 iterations, with 15,000 iterations as 
burn-in, and convergence was assessed by a variety of methods, including graphical diagnostics. 
The posterior inference was based on a thinned sample of 1000 elements, resulting from retaining 
every 15-th simulated parameter vector. In order to compare the different models, we calculated 
the deviance information criterion (DIC) proposed by [30]. The DIC values are presented in the 
first row of Table 1. The model proposed by Leroux has the poorest fit followed by the model 
with all neighborhood components and BYM model. Although they have similar values, from 
these results, it is clear that the model with three components is the one that best fits the data. 

In order to check the model sensitivity with respect to the choice of the prior distribution for  
the variance parameters, we fit the model considering a Gamma distribution with parameters 

0.01 and 0.01 for these precision parameters. The values of the DIC criterion are shown in the 
second row Table reftab:dicsnc01. The results remained almost the same as before. Again, the 
best model is the model with three components, while the BYM and Leroux models had the 

τ 
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Tabela 2: Logarithm Score for North Carolina data base using the resampling weight method 
for Gamma(0.5, 0.0005) (first row) and Gamma(0.01, 0.01) (second row). 

 
Prior All comp Three components Leroux BYM 

Gamma(0.5, 0.0005) 2.24 2.24 6.89 2.48 
Gamma(0.01, 0.01) 2.24 2.22 7.56 2.63 

 
 

worst fits. 
The DIC has been criticized as an inadequate measure to evaluate models and it should be 

considered cautiously ([28]). Therefore, in addition to this global measure, we also calculated a 
cross-validation posterior predictive distribution check proposed by [31]. 

We computed the approximated conditional probability ordinate using importance weighting 
and importance resampling, as it was proposed by [31]. The basic idea of posterior predictive 
checking is to assess the model’s fit to the count in a given area by a two step procedure. In the 
first one, we obtain a predictive distribution for the i-th area without using the observed count 
in the area in question. In the second one, we compare the truly observed disease count in that 
area with the predictive distribution evaluating how extreme it is. 

More specifically, let θ be the vector of all parameters in a given Bayesian model and Y−i 

denote the data vector without the i-th area count.  Let p(θ|Y−i) denote the posterior distri- 
bution of θ computed without the observation in the i-th region. We define a cross-validation 
posterior predictive distribution of Y rep as − 

CPOi = p 
(
Y rep |Y  

) 
= p(Y rep |θ)p(θ|Y 

 
)dθ 

 

where Y rep
 

− is a predicted value for the count in region i based on the given model and data 
Yi.  This measure is also called conditional predictive ordinate (CPO). A small value of the 
CPOi indicates that the i-th observation is very unlikely under the model and the remaining 
observations. 

As it is very costly to refit the model without each observation in turn, [31] avoid the 
refitting of the model using importance weighting and importance resampling to approximate 
the posterior distribution that would be obtained if the analysis were repeated without the small 
area. We used their proposal in this paper. 

In order to compare the observed CPO’s we used a summary measure known as Logarithmic 
Score [14]. This is a scoring rule. This means that it provides an evaluation of the model 
regarding forecasts performance, based on the posterior predictive distribution. This measure 
is calculated as 

 

LS = − i=1 log(CP Oi) . (9) N 
The lower this value, the better the model is fitted. According to [32], that score is asymp- 

totically equivalent to Akaike Information Criterion if the observations are independent. 
Table 2 shows the values computed for these measures using the resampling weight method 

for the two priors considered before. We note that the models with all the components and 
the one with three components presented the best performance with respect to this criterion, 
since they have lower values. The model proposed by Leroux had the poorest performance 
among the four. Tables 3 show the results using the method of importance resampling using 
the same priors. We notice here that again our models, the one with all components and the 
one with three, were well above the others. It is also noticeable that Leroux model had a poor 
performance in all the cases. 

∫ 
−i 
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Tabela 3:  Logarithm Score for North Carolina data base using the importance resampling 
method for Gamma(0.5, 0.005) (first row) and Gamma(0.01, 0.01) (second row). 

 
Prior All comp Three components Leroux BYM 

Gamma(0.5, 0.0005) 2.05 2.05 2.97 2.40 
Gamma(0.01, 0.01) 2.05 2.04 2.73 2.38 

 
 

Conclusions 

In our model, we considered a precision matrix equal to a weighted average of increasing 
neighborhood matrices. One possibility we have not explored in this paper is to define a con- 
tinuous version of this model. Let λ(t) be a probability density function defined for t ∈ [0, 1] 
and R(t) be a continuously defined precision matrix. Assume that R(t) as a function of t is an 
injective function. The precision matrix of the mixture model is given then by 

1 
Q = σ2 

∫ 1 

λ(t)R(t)dt . 
0 

This model would allow different degrees of neighborhood and could be more flexible to adapt 
to empirical data. 

Another possible extension of the model is to include other kinds of neighborhood structure 
in the mixture of matrices that compose the precision. For example, we can include a matrix 
which has neighborhood criteria based on the size of the cities. It is also possible treat space-time 
data including matrices that represent time relationship. 

The BYM model is very popular but one problem with it is to find the appropriate spatial 
smoothing degree to estimate the relative risks. In fact, other authors have noticed its tendency 
to oversmooth the estimates in some cases [6]. The model we treat in this paper allows for 
the multiple definition of a smoothing neighborhood. In our model, the λj parameters control 
automatically this smoothing. The model can be specially useful in the situation where the 
underlying risk is practically constant. 

We were able to interpret the conditional distributions involved in our model. The correlation 
between neighbors depend on the vector of λj values and on the graph structure. 

We view our model as an additional tool the staticician has available to made inference on 
the relative risks of disease mapping problems. However, the model can also be applied to other 
type of spatial data that requires the specification of neighborhood structures such as space-time 
problem or spatial survival data analysis. 
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