INTERVALO DE CONFIANÇA PARA UM PROBLEMA DE CALIBRAÇÃO

Liliane Lopes Cordeiro^{1,2}, João Domingos Scalon^{1,2}

RESUMO

Em problemas de calibração, também conhecida como regressão inversa, deseja-se obter a estimativa para a variável independente X e o respectivo intervalo de confiança, dado a variável dependente Y. O método de Graybill, calcula o estimador de mínimos quadrados para o intercepto (β_0) , a inclinação (β_1) e o valor desconhecido de x_0 . O estimador de x_0 é tendencioso e, portanto, apresenta-se também o estimador de Naszódi, que é aproximadamente corrigido para o viés. A seguir, calcula-se o estimador de máxima verossimilhança de σ^2 , em que substitui-se os estimadores de mínimos quadrados de β_0 , β_1 e x_0 , aplica-se o método de Graybill (1976) sobre o modelo de regressão linear simples centrado para obter um estimador para o valor desconhecido de x_0 e o seu respectivo intervalo de confiança $100(1-\alpha)\%$. Graybill (1976) alega que o coeficiente de confiança deste intervalo é inferior a $100(1-\alpha)\%$. Para investigar essa afirmação, neste trabalho calcula-se a confiança deste intervalo para conjuntos de dados simulados usando o software R. A partir dos resultados obtidos pode-se concluir que a alegação de Graybill é verdadeira mas, a diferença é muito pequena.

Palavras-chave: Regressão inversa, estimação, simulação.

¹DEX - Universidade Federal de Lavras, lililopescordeiro@yahoo.com.br, scalon@dex.ufla.br

²Agradecimento à FAPEMIG pelo apoio financeiro.