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MULTIVARIATE POLYGENIC MIXED MODEL IN 

ADMIXED POPULATION 
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Abstract: In genome-wide association studies (GWAS) the Principal Component based 

Analysis (PCAs) provides a global ancestry value per subject, allowing corrections for 

population stratification. These coefficients are typically estimated assuming unrelated 

individuals and making use of dual-space properties to prevent high dimensional and 

sparse matrix problems. However, if family structure is present and is ignored, such sub-

structure may induce artifactual PCAs. Considering the variable-space in high 

dimensional data set, extensions of the PCA have been proposed by Konishi and Rao 

(1992) taking into account only sibship relatedness and by Oualkacha et al. (2012) which 

can be applied to general pedigrees. Further, considering the subject-space, Blangero et 

al. (2013) obtained an Eigen simplification of the likelihood function from the univariate 

polygenic mixed model. In this work we propose to apply these methods to estimate the 

global individual ancestry using PCs extracted from different variance components matrix 

estimators and dual-space properties for subjects and variables. We use the GENOA 

sibship data consisting of European and African American subjects and the Baependi 

Heart Study consisting of 80 extended families collected from the highly admixture 

Brazilian population, both with SNPs data from Affymetrix 6.0 chip as applications. All 

the implementation are done using R package. 

 

1 Introduction 

Studies of human complex diseases and traits associated with candidate genes are 

potentially vulnerable to bias (confounding) due to population stratification and inbreeding, 

especially in admixture population. In genome-wide association studies (GWAS) the 

Principal Components (PC) method provides a global ancestry value per subject, allowing 

corrections for population stratification (Price et al., 2006). However, these coefficients are 
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typically estimated assuming unrelated individuals and if family structure is present and is 

ignored, such sub-structure may induce artifactual PC.  

 

Considering the variable-space in high dimensional data set, extensions of the PCA 

have been proposed by Konishi and Rao (1992) taking into account sibship relatedness. In 

order to combine a set of phenotypes in family-based studies, Ott and Rabinowitz (1999) 

introduced the principal components of heritability (PCH), which capture the familial 

information across phenotypes by calculating linear combinations of traits that maximize 

heritability. Within the PCH framework, Oualkacha et al. (2012) proposed an ANOVA 

estimate for the variance component matrices, which can be easily calculated to obtaining 

PCHs and are applied to general pedigrees and high dimensional family data. Further, 

considering the subject-space, Blangero et al. (2013) obtained an eigen simplification of the 

likelihood function from the univariate polygenic mixed model. 

 

In this work, considering family-based studies and SNP (Single Nucleotide 

Polymorphism) data we apply these methods to estimate the global individual ancestry using 

PCs extracted from different variance components matrix estimators and dual-space 

properties for subjects and variables. For the application we use the GENOA sibship data 

consisting of European and African American subjects and the Baependi Heart Study 

consisting of 80 extended families collected from the highly admixture Brazilian population, 

both with SNPs data from Affymetrix 6.0 chip. All the implementations are done using R 

package. 

 

2 Material and Methods 

           2.1. Multivariate family-based mixed model  

 

Let fjy
 be the (

1×fn
) vector of responses for j -th variable evaluated on individuals of 

the f -th family ( pjFf ,...,2,1;,...,2,1 == ). Consider the linear mixed model given by,  

 

fjfjfjfj egy ++= µ
,                                                                                                       (1) 

 

where fjµ
 is the (

1×fn
) overall mean vector, fjg

 is the (
1×fn

) random effect vector 

defined as polygenic effect, and fje
 is the (

1×fn
) error vector.  The random components are 
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assumed to be uncorrelated with
( ) 0=fjuE

,  
( ) 0=fjeE

 and covariance matrix 

( ) 22 gjffjgCov σΦ=
 and

( ) 2
ejffj IeCov σ=

, where 
2
gjσ

 and 
2
ejσ

 are the variance due the 

polygenic random effect and error components, respectively, associated to j -th variable.  The 

( ff nn ×
) matrix fΦ2

 is the kinship matrix representing the expected identity by descend 

(index of relatedness) between members of the same family.  

 

Let 
( )′′′′= fpfff yyyY ,...,, 21  be a (

1×pn f ) vector for all p  variables and all members of 

the f-th family, with 
( ) fffYE µ⊗= 1

 and
( ) efgff IYCov Σ⊗+Σ⊗Φ= 2

, where f1
is a (

1×pn f ) unity vector, and gΣ
 eΣ are ( pp × ) covariance matrix for p  variables associated 

with polygenic and error component, respectively.  For all F families we have 

( )′′′′= FYYYY ...,, 21  a ( 1×Np ) vector containing all p  variables for all individuals, ∑= F

fnN
1  

with 
( ) fNYE µ⊗= 1

 and 
( ) ( ) ,2 eNgf IDiagYCov Σ⊗+Σ⊗Φ=

.f = 1,..,F.  This framework 

represents the multivariate family-based model.  In our application, the p  variables represent 

the set of SNPs selected from the whole genome to estimate the global ancestry coefficients 

for individuals in family structures.  Our challenge is to determine which covariance matrix, 

gΣ
or eΣ , to choose to extract the PCs, to obtain the appropriate estimators for these 

covariance matrices, and how to handle the large number of variables (SNPs). 

 
2.2. Principal component analysis for unrelated individuals 

 
The methodology proposed by Price et al. (2006) to obtain the global ancestry 

coefficients extracts the PC from the eigenvalue decomposition of the  ( pN × ) matrix 

( )′= P
F

PPP XXXX ,...,, 21 , where 
P
fX
  is a (

pn f ×
) matrix with the standardized values of 

SNPs genotype for f-th family.  The method is based on classical PC optimization problem 

and is equivalent to obtain the PC of the spectral decomposition of correlation matrix obtained 

from the model in equation (1) but assuming independence between the subjects, i.e., 

 

,fffj ey += µ
                                                                                                               (2) 
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such that, for 
( ) ,,...,,..., 1111

′′′′=× FpFNp yyyY
 we have ( ) µ⊗= NYE 1  and

( ) P
NIYCov Σ⊗=

.  The 

covariance matrix 
PΣ
 is estimated as 

 

( )( ) S
N

yyyy
N f i ifif

P

1

1

1

1ˆ
−

=′−−
−

=Σ ∑ ∑
                                                         (3) 

 

with 
( )( )∑ ∑ ′−−=

f i ifif yyyyS
, and 

NpNY
N

y 1
1

ˆ ′== ×µ
 as the overall mean.  The upper 

symbol P represents the Price method.  The global ancestry coefficients are obtained from the 

spectral decomposition of the correlation matrix
PPPP DDR Σ= ˆˆ

, with 
PD  as the diagonal 

matrix with elements
( )jjjj pps −= 1

, N

yN
p j

j 22

1

+
+

=
, pj ,...,2,1= .  The global ancestry 

coefficients can also be obtained from the singular value decomposition of the standardized 

PX
matrix, having the j –th column given by

( ) P
jj

P
j DyYX −=

. 

 
            2.3. Principal component analysis for sibship data 
 

Konishi and Rao (1992) extended the PCA to take into account the sibship relationship 

(equation (1)) and proposed ANOVA based-estimators for the covariance matrices with the 

PCs extracted from those matrices. For sibship of any size the kinship matrix is given by 

ff nnf 112 ′=Φ
 and using the model described in section 2.1,  the estimators for the covariance 

matrices can be directly obtained from the classical ANOVA results, as given below 

FN

SwK
e −

=Σ̂
,                                                                                                                (4) 

( ) ( )
( ) ( )1//

/1/

1
ˆ

2
1

0 −−
−−−=









−
−

−
=Σ

∑
−

FNnN

FNSFS

FN

S

F

S
N

f f

wbwbK
g

,                                               (5) 

with

( )
1

/2

0 −

−
=

∑
F

NnN
N f f

, wS  and bS  as the sum of square and products matrices 

within and between families, respectively, with bw SSS += , and 
PSS = , the total sum of 

square and products matrix. These matrices can be written as 

( )( )∑ ∑ ′−−=
f i fiffifw yyyyS

,                                                                                (6) 

( )( )∑ ′−−=
f fffb yyyynS

.                                                                                    (7) 
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By considering 
K
e

K
g

K Σ+Σ=Σ
 and using (4) and (5), their estimators are given by

K
e

K
g

K Σ+Σ=Σ ˆˆˆ
.  One should keep in mind that the estimator of 

KΣ
 does not correspond to the 

estimator
P∑̂ .  The PCs may also be obtained using the spectral decomposition of the 

matrices,
KΣ̂

, 
K
gΣ̂

 and
K
eΣ̂ .   

 

To obtain the PCs from the standardized data, one can use
KK

g
KK

g DDR Σ= ˆˆ
 and  

KK
e

KK
e DDR Σ= ˆˆ

, with
KD  as the diagonal matrix with elements

( ) 2/1−K
jjs

, 
K
jjs

 being the 

diagonal elements of
KΣ̂

, pj ,...,2,1= .  Similarly, these PCs can be obtained from the singular 

value decomposition of the standardized 
AX
matrix, with the j –th column represented by 

( ) A
jj

A
j DyYX −=

. 

 
            2.4. Principal component analysis for extended pedigrees data 
 

When the multivariate family-based model described by (1) is extended for general 

pedigrees, Oualkacha et al. (2012) proposed to use ANOVA estimators for the variance 

component matrices.  By using the matrices wS  e bS  given by  equations (6) and (7), 

respectively, the estimators of the covariance matrices are written as 

 

( ) ( )
( ) ( ) ( )FNF

N

FNSFS

ca
b

c

wb
g

−−−−






 −

−−−=Σ
/1/

/1/ˆ

ττστ
,                                                                (8) 

 

( ) A
g

ca
w

A
e FN

S
FN

Σ
−
−−

−
=Σ ˆ1ˆ ττ

,                                                                                     (9) 

 

where 
( ) ∑∑∑∑∑

= ====
Φ=Φ====

nf

j

nf

k

f
jk

f
b

ff
a

F

f

f
b

f
c

F

f

f
bb

F

f

f
aa Tr

n 1 1

)()()()(

1

)(

1

)(

1

)( ,2,
1

,, ττττττττ
. 

  

The upper symbol A indicates the methodology proposed by Oualkacha et al. (2012).  

When ff nnf 112 ′=Φ
, the estimators in (8) and (9) are the same estimators in (4) and (5), 
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proposed by Konishi and Rao (1992).  The PCs can be obtained by spectral decomposition of 

the matrices,
AΣ̂
, 

A
gΣ̂
 and

A
eΣ̂ , with 

A
e

A
g

A Σ+Σ=Σ ˆˆˆ
 .  

Furthermore, we can also use the correspondent correlation matrices for (8) and (9) to 

calculate the PCs, where 
AA

g
AA

g DDR Σ= ˆˆ
 and 

AA
e

AA
e DDR Σ= ˆˆ

 are the decomposition of the 

standardized 
AX
matrix, with the j –th column given by

( ) A
jj

A
j DyYX −=

, and 
AD  is a 

diagonal matrix with elements
( ) 2/1−A

jjs
, 

A
jjs

 are the diagonal elements of
AΣ̂
, pj ,...,2,1= .  Then 

the PCs can be obtained from the singular value 
( ) A

jj
A
j DyYX −=

. 

Other way to determine the PCs for extended pedigrees it is to apply the Principal 

Component of heritability (PCH) proposed by Ott and Rabinowitz (1999) and also used by 

Oualkacha et al. (2012).  The motivation behind this method is that instead of looking for the 

linear combinations of phenotypes with maximum variance, one should look for the linear 

combination of traits that maximizes its heritability, a measure which accounts for intra 

family correlations.  In our case, it is to find combinations of the phenotypes (in our case, 

SNPs) that maximize the trace of the heritability matrix, eg

g
gH

Σ+Σ
Σ

=2

.   Thus, the 

maximization of 
bb

bb
bH

eg

g
g )(

)(2

Σ+Σ′
Σ′

=
 is equivalent to  

( )bb

bb
A
e

A
g

A
g

bb Σ+Σ′
Σ′

= ˆˆ

ˆ
maxarg

1

.                                                                                              (10) 

To maximize  (10) is equivalent to obtain the eigenvectors b  such that 1ˆ =Σ′ bb A
e ,  and

bb

bb
A
e

A
g

b Σ′
Σ′
ˆ

ˆ
max

.  To obtain the PCs in this case, we can use the eigenvectors of the generalized 

eigen system (Mardia et al., 1979).  Since these calculations use high-dimensional and sparse 

matrices ( Np >> ), Wang et al. (2007) proposed a ridge penalized principal components 

approach to obtaining the PCs of heritability to accommodate large number of phenotypes.  In 

this situation, the leading PC is defined as  
( ) 2

1
maxarg

βλβ
λ

+Σ′
Σ′

=
= bb

bb
PCH

A
e

A
g

, with λ is the 

regularization parameter to be specified.  When λ = 0, the PCHλ is the original non-penalized 

leading PC (PCH).  When ∞→λ , the second term of the denominator of PCHλ dominates 

and the PCHλ approaches the linear combination that maximizes the between family 
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variation,
A
gΣ
, i.e.,  

bbPCB A
b∑′=

=1
maxarg

β .  When λ is between zero and infinity, the PCHλ 

changes between the PCH and the PCB. 

 

            2.5. GENOA Study  
 

GENOA sibship data consists of European (Rochester, R) and African American 

(Jackson, J) subjects with SNPs data from Affymetrix 6.0 chip. For Rochester (Jackson), the 

screened data have 534 (548) families with 1,386 (1,263) individuals and data on 83,568 

(50,510) SNPs. The two screened datasets include 9,224 common SNPs and 2,383 individuals 

(J:1079, R:1304) from 816 sibships (J:364, R:452). Detailed description of the sibship size 

and number of families are described in Table 1. 

 

           2.6. Baependi Heart Study  
 

Baependi Heart Study consists of 119 extended Brazilian families with 1,712 

individuals and SNPs data from Affymetrix 6.0 SNP chip. The screened dataset includes data 

from 80 families (1109 individuals) and 8,764 SNPs. Families with one individual or 

unrelated individuals with genotype data were excluded  due to lack of information. Detailed 

description of the sibship size and number of families are described in Table 2. 

 
Table 2: Distribution of family size for the Baependi Heart Study 

 

 
3 Results and Discussion 

For sibship data (GENOA), Price et al. (2006) methodology showed very sensitive for 

data standardization (results not shown). The PCs unstandardized results had power to 

discriminate the two racial groups, but they were not sensitive to detect outlier families. 



  

207 
 

Applying Konishi and Rao (1992) methodology the decomposition of the matrix 
K
gΣ̂

 was 

more powerful and robust comparing with the residual covariance matrix decomposition,
K
gΣ̂

, 

and provided similar results for  
K
tΣ̂  (Figure 1).  In our data, this was due to the fact that the 

covariance matrix 
K
eΣ̂  is close to null matrix, 

KK
g Σ≅Σ ˆˆ

.  When the PC of heritability (PCH) 

was used, we applied the penalization procedure to find the PCs.  The results showed that the 

PCHλ (PC of heritability) had power to discriminate the groups (result not shown). The 

penalization parameter (λ) estimated using cross validation was equal to 100. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Konishi and Rao method for unstandardized data 
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Considering Baependi data and using Oualkacha method the population stratification 

was observed only for decomposition of g
∑

 but not for e∑ indicating the importance of the 

family relatedness (Figure 2).  For standardized data we observed similar pattern when using 

Price and Oualkacha’s method. We also observed that larger the family more admixture is 

present. For example, family 15 (family size = 60 – red color) is spread out over the 3 axes 

indicating the there are three potential racial admixture in this family. On the other hand, 

family 46 (family size = 4, yellow color) has three individuals from one race and the other 

classified as mixed race.  One interesting point is that Price’s method has more compressed 

axes than Oualkacha due to the inclusion of the family structure in the latter.  

 

4 References 

 

 

 

 

 

 

Figure 2:  Distribution of the Brazilian families using Price (left) and Oualkacha’s (right) 

methods. 

4 Conclusion 

Konishi and Rao approach showed that the discrimination of racial groups was 

independent of the standardization, imputation procedure and was not affected by the outlier 

families. For standardized data we observed similar pattern when using Price and Oualkacha’s 

methods, but the former has more compressed axes. The admixture is better characterized by 

PCs from Oualkacha, which include family structure. We also observed that larger the family 

more admixture is present. 
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