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MULTIVARIATE POLYGENIC MIXED MODEL IN
ADMIXED POPULATION
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Abstract: In genome-wide association studies (GWAS) the Principal Component based
Analysis (PCAs) provides a global ancestry value per subject, allowing corrections for
population stratification. These coefficients are typically estimated assuming unrelated
individuals and making use of dual-space properties to prevent high dimensional and
sparse matrix problems. However, if family structure is present and is ignored, such sub-
structure may induce artifactual PCAs. Considering the variable-space in high
dimensional data set, extensions of the PCA have been proposed by Konishi and Rao
(1992) taking into account only sibship relatedness and by Oualkacha et al. (2012) which
can be applied to general pedigrees. Further, considering the subject-space, Blangero et
al. (2013) obtained an Eigen simplification of the likelihood function from the univariate
polygenic mixed model. In this work we propose to apply these methods to estimate the
global individual ancestry using PCs extracted from different variance components matrix
estimators and dual-space properties for subjects and variables. We use the GENOA
sibship data consisting of European and African American subjects and the Baependi
Heart Sudy consisting of 80 extended families collected from the highly admixture
Brazilian population, both with SNPs data from Affymetrix 6.0 chip as applications. All

the implementation are done using R package.

1 Introduction
Studies of human complex diseases and traits adedcwith candidate genes are
potentially vulnerable to bias (confounding) dueptmpulation stratification and inbreeding,
especially in admixture population. In genome-widssociation studies (GWAS) the
Principal Components (PC) method provides a gl@aestry value per subject, allowing
corrections for population stratification (Price at, 2006). However, these coefficients are
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typically estimated assuming unrelated individuasl if family structure is present and is

ignored, such sub-structure may induce artifadd@l

Considering the variable-space in high dimensia®sh set, extensions of the PCA
have been proposed by Konishi and Rao (1992) taikittgaccount sibship relatedness. In
order to combine a set of phenotypes in family-dastidies, Ott and Rabinowitz (1999)
introduced the principal components of heritabiliiyCH), which capture the familial
information across phenotypes by calculating lineambinations of traits that maximize
heritability. Within the PCH framework, Oualkacha &. (2012) proposed an ANOVA
estimate for the variance component matrices, wharh be easily calculated to obtaining
PCHs and are applied to general pedigrees and thigiensional family data. Further,
considering the subject-space, Blangero et al. 3p0btained an eigen simplification of the

likelihood function from the univariate polygeniaxad model.

In this work, considering family-based studies a&NP (Single Nucleotide
Polymorphism) data we apply these methods to etith@ global individual ancestry using
PCs extracted from different variance componentdrimaestimators and dual-space
properties for subjects and variables. For theiepipdn we use the GENOA sibship data
consisting of European and African American sulsjeahd the Baependi Heart Study
consisting of 80 extended families collected frdra highly admixture Brazilian population,
both with SNPs data from Affymetrix 6.0 chip. Alhié implementations are done using R

package.

2 Material and Methods

2.1. Multivariate family-based mixed moel

Let Vi be the (' f ><1) vector of responses tdr-th variable evaluated on individuals of

the T -th family (F =12+ F; 1=12...P) consider the linear mixed model given by,

Y =My 0y +efj’ (1)

where #i is the (nf xl) overall mean vector,gfj is the Pf ><1) random effect vector

defined as polygenic effect, and is the ('f >(1) error vector. The random components are
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E(efj): 0

u.J]=0 . .
assumed to be uncorrelated Wth'["I fJ) , and covariance matrix

Covlg,)=20,0?

2 0.2

Covie. |=1.0? Vo : _
(fJ) 74  where "9 and 9 are the variance due the

and

polygenic random effect and error components, sy, associated td -th variable. The

(

(index of relatedness) between members of the $amiéy.

N ><nf) matrix 2%, is the kinship matrix representing the expectezhiidy by descend

Let Yo = (yfl’ yfz""’yfp) be a (‘f IC)xl) vector for all P variables and all members of

=1, Oy, __CcodY,)=20, 05 +I, 0%,

the fth family, with T and . where Tfis a (

n; px1 2

) unity vector, andZg care (P* P) covariance matrix for® variables associated

with polygenic and error component, respectivelyFor all F families we have

' F
=Y.\Y, ! . . o N = n
Y =YY a (NP*1y vector containing alP variables for all individuals, 2, M

with E(Y)le U # and COV(Y): Diag(2¢f)D 2oty U ze’.f = 1,..,F. This framework

represents the multivariate family-based modelounapplication, the® variables represent
the set of SNPs selected from the whole genomatimate the global ancestry coefficients
for individuals in family structures. Our challeng to determine which covariance matrix,

Zgorze, to choose to extract the PCs, to obtain the gpu@te estimators for these

covariance matrices, and how to handle the largebeun of variables (SNPs).
2.2. Principal component analysis for unrelated intviduals

The methodology proposed by Price et al. (2006)olain the global ancestry

coefficients extracts the PC from the eigenvalueodgosition of the wx Py matrix

P _ P P P ' P
X _(Xl %z ""’XF) , Where X is a (nf X p) matrix with the standardized values of

SNPs genotype for f-th family. The method is basedclassical PC optimization problem
and is equivalent to obtain the PC of the spediabmposition of correlation matrix obtained

from the model in equation (1) but assuming indelepexe between the subjects, i.e.,

Yg = Ui T €, )
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such that, for Npxt (yll’ ’ylFl""’y'FP)’ we haveE(Y):lN Ou andCOV(Y): IO ZP. The

ZP
covariance matrix~ is estimated as

Z > (v - S - y)'=ﬁ8 .

' A 1 ,
with = Z z (ylf )(ylf y ) y=4= NYN><p 1N

, and as the overall mean. The upper

symbol P represents the Price method. The glabdsdry coefficients are obtained from the
IQP P< PDP b
spectral decomposition of the correlation matrix , with D™ as the diagonal

1+ N yJ
matrix with element( VP, [1 p]] 2+2N | 1=12...P  The global ancestry

coefficients can also be obtained from the singuldue decomposition of the standardized

P P
X matrix, having theJ —th column given by l (Y Y )D

2.3. Principal component analysis foitsship data

Konishi and Rao (1992) extended the PCA to take agicount the sibship relationship
(equation (1)) and proposed ANOVA based-estimatorghe covariance matrices with the

PCs extracted from those matrices. For sibshipngf size the kinship matrix is given by
20, :1nf1'n

matrices can be directly obtained from the clag@ANOVA results, as given below

* and using the model described in section 2.1, eitimators for the covariance

sK = S
° N-F_ (4)
iKzN—l( S _ S j:%/F_l_SN((N_F)
° °\F-1 N-F) [N-X nZ/NJI(F-1) )
N-(¥,n2/N)
ith ©  F-1 S. S, i
with , and as the sum of square and products matrices

within and between families, respectively, with- ¥ and S=S° the total sum of

square and products matrix. These matrices carrittenvas

Su =22 (yif ~ Yy )(yif ~Yi )' (6)

§=n -y ) -v) -
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zK - K +ZK
By considering 9 ¢ and using (4) and (5), their estimators are gibgn

K=K 45K - 3
9 "¢ . One should keep in mind that the estimator ofdoes not correspond to the

estimatoZP. The PCs may also be obtained using the spedgabmposition of the

. SK o3k 5K
matrices,” , 9 andZE.

_ _ ég - DKiK DK
To obtain the PCs from the standardized data, cm®e wuse 9 and

SK _ R KSKRK K \V/2 K
R =Db"2.D , withD“ as the diagonal matrix with eIemeLSﬂS) : Si being the

sK . _
diagonal elements gf = 12,...p. Similarly, these PCs can be obtained from thgudar
A .
value decomposition of the standardizéd matrix, with the J —th column represented by

XiA :(Yj _yj)DA_

2.4. Principal component analysis foxéended pedigrees data

When the multivariate family-based model descrilbgd(1) is extended for general
pedigrees, Oualkacha et al. (2012) proposed toAM@VA estimators for the variance

component matrices. By using the matric%s e S given by equations (6) and (7),

respectively, the estimators of the covariance icegrare written as

S /(F-1)-S,/(N-F)

5, = =
= i) )
N , (8)
iAz 1 SN_(Ta_Tc)AA
° N-F N-F 9 (9)
= E F 1 nf nf
r,=> 1", => P =y =" " =Tr(2<D(”), iD=y ol
=) =1 =1 N Er= _

where

The upper symbol A indicates the methodology preddsy Oualkacha et al. (2012).

20, =1 1 . . L
When f 1“f1”f, the estimators in (8) and (9) are the same eg&timan (4) and (5),
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proposed by Konishi and Rao (1992). The PCs cavbbaned by spectral decomposition of

A A SA SA _SA + <A
the matrices? , 24 andze,with 2=yt 2 .
Furthermore, we can also use the correspondenglabon matrices for (8) and (9) to

DA — ASTARA DA — MASARA
calculate the PCs, Wherlé:{g =b7z,D and R =D"2.D

X" i X
standardized” matrix, with the ] —th column given by'!

are the decomposition of the
— IV A
=Y, -y,)p , and D" is a

diagonal matrix with elements’ , 7 are the diagonal elementsof, | = 12,...P Then

A _ o A
the PCs can be obtained from the singular vgfwe_ (Yi Yi )D :

Other way to determine the PCs for extended peesgiteis to apply the Principal
Component of heritability (PCH) proposed by Ott d&abinowitz (1999) and also used by
Oualkacha et al. (2012). The motivation behind thethod is that instead of looking for the
linear combinations of phenotypes with maximum aacie, one should look for the linear
combination of traits that maximizes its heritaljilia measure which accounts for intra

family correlations. In our case, it is to findnsbinations of the phenotypes (in our case,

) >
Hy = 2
SNPs) that maximize the trace of the heritabilityatmx, 2o+ 2, : Thus, the
b'z.b
Ho®) = s 5
maximization of (24 +2) is equivalent to
argmax bligb
. IeA | €A
Ibl=L b b Izg +3 E (10)
. . . . . b bsh=1
To maximize (10) is equivalent to obtain the eigastorsP such that™ ~e , and
o b'Zlb
Xob'ig\b

. To obtain the PCs in this case, we can useitfeneectors of the generalized

eigen system (Mardia et al., 1979). Since thesmulzdions use high-dimensional and sparse

matrices (p>> N), Wang et al. (2007) proposed a ridge penalizedcgral components
approach to obtaining the PCs of heritability tcaomodate large number of phenotypes. In

b'z’b

PCH , = argmax ( A) 5
this situation, the leading PC is defined as = b b+/1”ﬁ” , with A is the
regularization parameter to be specified. WhenO0, the PCH is the original non-penalized
leading PC (PCH). Wheh — @, the second term of the denominator of RCQleminates

and the PCH approaches the linear combination that maximiZes between family

205



A PCB =argmaxb' >/ b
variation,”9, i.e., |4t . When) is between zero and infinity, the PCH

changes between the PCH and the PCB.

2.5. GENOA Study

GENOA sibship data consists of European (Roche$t¢rand African American
(Jackson, J) subjects with SNPs data from AffymedtD chip. For Rochester (Jackson), the
screened data have 534 (548) families with 1,3886@) individuals and data on 83,568
(50,510) SNPs. The two screened datasets incl@ @ommon SNPs and 2,383 individuals
(J:1079, R:1304) from 816 sibships (J:364, R:4%®tailed description of the sibship size

and number of families are described in Table 1.

Table 1: Distribution of family size for the 2 populations

Nel 2| 3 [ 45[6[7[8[9]10[11[12]14]17
Jackson | 191 92 |38 |15 | 17 2 — | = | = | —
Rochester [ 264 | 101 | 37 |24 | 9 |6 |4 | 3 | | 1 — |

2.6. Baependi Heart Study

Baependi Heart Study consists of 119 extended Baazifamilies with 1,712
individuals and SNPs data from Affymetrix 6.0 SNRpc The screened dataset includes data
from 80 families (1109 individuals) and 8,764 SNRF=amilies with one individual or
unrelated individuals with genotype data were edetl due to lack of information. Detailed

description of the sibship size and number of feasire described in Table 2.

Table 2: Distribution of family size for the Baependi He&tudy

Nel 2|34 5|6 |7|8|9]|10]11]12|13 |14
Frequency | 2 | 8 | 6 | 8 | 5 1 4 | 6 | 5|6 | g | 3

Ny |16 | 18|19 | 21 | 24 |27 | 32 |46 |48 | 60 | 61 | 68 | 93
Frequency | 4 | 3 | 1 | 3 I 1 1 I 1 1 I 1 1

3 Results and Discussion
For sibship data (GENOA), Price et al. (2006) mdtiiogy showed very sensitive for
data standardization (results not shown). The PQstandardized results had power to

discriminate the two racial groups, but they wer# sensitive to detect outlier families.
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A

K

Applying Konishi and Rao (1992) methodology the a@aposition of the matrixzg was

s K
more powerful and robust comparing with the redidoa&ariance matrix decompositiozrﬂ :

Ss-K
and provided similar results foFt (Figure 1). In our data, this was due to the fhat the

. SK 5K
covariance matn)?:e is close to null matrix;

g

<K

When the PC of heritability (PCH)

was used, we applied the penalization procedufimdothe PCs. The results showed that the

PCH\. (PC of heritability) had power to discriminate tgeoups (result not shown). The

penalization parametek)(estimated using cross validation was equal ta 100

Konishi-Rao : PC2 vs. PC1 (based on L)
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Figure 1: Konishi and Rao method for unstandardized data
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Considering Baependi data and using Oualkacha rdetti® population stratification
2

was observed only for decomposition %ﬁ but not for ~¢indicating the importance of the
family relatedness (Figure 2). For standardizetd e\ observed similar pattern when using
Price and Oualkacha’s method. We also observedldngér the family more admixture is
present. For example, family 15 (family size = 6@ed color) is spread out over the 3 axes
indicating the there are three potential racial ixtime in this family. On the other hand,
family 46 (family size = 4, yellow color) has thre&lividuals from one race and the other
classified as mixed race. One interesting poirihé Price’s method has more compressed

axes than Oualkacha due to the inclusion of thelyastructure in the latter.
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Figure 2. Distribution of the Brazilian families using Pei (left) and Oualkacha’s (right)
methods.
4 Conclusion

Konishi and Rao approach showed that the discrimmnaof racial groups was
independent of the standardization, imputation @doce and was not affected by the outlier
families. For standardized data we observed sirp#édiern when using Price and Oualkacha’s
methods, but the former has more compressed akesadmixture is better characterized by
PCs from Oualkacha, which include family structufée also observed that larger the family

more admixture is present.
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