Ajuste da função logística a dados de crescimento

Glauber Márcio Silveira Pereira¹
Lídia Raquel de Carvalho¹
Martha Maria Mishan¹

1 Introdução

As curvas de crescimento têm diversas aplicações de suma importância em várias áreas, em particular o modelo Logístico também tem sido bastante utilizado.

Mazzini e colaboradores (2003) ajustaram as funções de Brody, Gompertz, Logística, Richards e von Bertalanffy a dados de crescimento de bovinos Hereford. Foram obtidos ajustes de curvas individuais para os animais em dois diferentes modelos: não-ponderado e ponderado. O modelo que se ajustou melhor foi o ponderado pelo inverso da variância dos pesos. Os modelos que apresentaram melhor ajuste foram os de von Bertalanffy e Gompertz, seguidos do Logístico.

Silva, Aquino e Oliveira (2001) ajustaram as modelos de crescimento de Brody, Logístico, Gompertz, Richards e von Bertalanffy para descrever o crescimento de 542 animais da raça Nelore. Os modelos foram ajustados através dos mínimos quadrados generalizados para modelos de regressão não linear com erros auto-regressivos de primeira ordem. Concluíram que os modelos de von Bertalanffy, Gompertz e Logístico superestimaram o peso inicial e subestimaram o peso adulto dos animais, e que os modelos de Brody e Richards apresentaram um melhor comportamento em relação aos demais.

O objetivo desta pesquisa foi o estudo do modelo Logístico com ajustes em três estruturas de erros: de efeitos fixos, com ponderação e de efeitos mistos, a dados de massa de frutos de laranjeiras doces *Citrus sinensis* (L.) Osbeck em um experimento com cinco copas enxertadas em porta-enxertos situado na Fazenda Experimental Lageado em Botucatu, São Paulo. Para comparação foram utilizados os critérios: Quadrado médio dos resíduos, Critério de informação de Akaike, Critério de Informação Bayesiano de Schwarz, teste de Breusch Pagan, teste de Durbin Watson e coeficiente de determinação.

Palavras-chave: modelos não-lineares, estruturas de erros de efeitos fixos, estruturas de erros de efeitos ponderados, estruturas de erros de efeitos mistos, curvas de crescimento.

35

¹ Dep. De Bioestatística-IBB/UNESP-Botucatu. e-mail: glaubermsp@gmail.com

2 Material e métodos

O modelo utilizado foi o Logístico:
$$= \frac{\alpha}{1 + e^{-(\beta + \gamma x)}} + \varepsilon$$
 (1)

sendo y_i a observação no tempo x_i , os parâmetros: α a distância entre as duas assíntotas, β , um parâmetro de posição e γ está relacionado com a taxa de crescimento da função.

No modelo ponderado a função utilizada foi a mesma acima citada e foi empregado o método dos quadrados mínimos sendo que a ponderação foi feita pelo inverso da variância dos valores em cada tempo, empregando-se a opção WEIGHT do procedimento MODEL do SAS(SAS,1995). O modelo misto foi o seguinte:

$${}_{,j} = F(x , \boldsymbol{\theta}) + \Delta_j g(x , \boldsymbol{\theta}) + \xi_{,j} \qquad (2)$$
 sendo $g(x , \boldsymbol{\theta}) = \frac{F(x_l, \boldsymbol{\theta})}{\alpha} \qquad (3),$
$$\Delta_j \text{ definido como o efeito aleatório do j-ésimo indivíduo, com distribuição normal } (0, \sigma_{\Delta}^2),$$

$$\xi_{,j} \text{ definido como o erro aleatório, independente, com distribuição normal } (0, \sigma_{\xi}^2),$$

independente de Δ_j e $\boldsymbol{\theta}$ é o vetor dos parâmetros.

3 Resultados e discussões

Na tabela 1 são apresentados os coeficientes de determinação, AIC e BIC, e indicação do modelo mais apropriado segundo copa e porta-enxerto. Esta indicação foi baseada nos resultados dos testes de Breusch Pagan, para homocedasticidade, Durbin Watson, para independência e Shapiro-Wilk para normalidade dos resíduos. Muito embora os valores de coeficiente de correlação ao quadrado, AIC e BIC indicarem que a estrutura de erros de efeitos mistos deveria ser a melhor em muitas das repetições, como esta estrutura não corrigiu a heteroscedasticidade e a autocorrelação, optamos pela estrutura com ponderação que corrigiu estes problemas.

Pelos coeficientes de determinação, verifica-se que houve um bom ajuste para todas as copas e porta-enxertos (Figura 1 e 2). Os critérios AIC e BIC também variaram conforme o modelo ajustado.

Tabela 1- Coeficiente de correlação ao quadrado, AIC e BIC, e indicação do modelo mais apropriado segundo copa e porta-enxerto

		Modelo									_
	-									Modelo mais	
		Sem ponderação		Com ponderação		2	Misto		apropriado		
	Rep	R ²	AIC	BIC	R ²	AIC	BIC	R ²	AIC	BIC	
Baianinha	LC	0,89	244,4	249,2	0,97	138,8	144	0,97	343,8	551,7	SP
	SU	0,94	224,9	229,6	0,94	259,1	263,8	0,95	337,79	345,71	СР
	CA	0,96	203,9	208,6	0,95	259,2	264,0	0,99	282,22	290,13	CP
	TR	0,92	204,1	208,9	0,93	221,8	226,6	0,99	46,46	54,37	MI
	RF	0,90	231,1	235,8	0,82	284,7	289,5	0,99	212,04	219,96	Nenhum
Hamlim	LC	0,96	230,9	235,7	0,98	242,3	247,1	0,98	327,02	334,94	СР
	SU	0,94	243,9	248,7	0,96	243,9	248,7	0,99	340,9	348,8	SP
	CA	0,94	246,7	251,5	0,93	247,8	252,6	0,99	184,21	192,13	Nenhum
	TR	0,91	239,0	243,7	0,92	251,2	255,9	NC	NC	NC	CP
	RF	0,95	221,3	226,1	0,95	224,7	229,4	0,98	311,82	319,74	СР
Itaboraí	LC	0,94	212,3	217,1	0,90	226,6	231,3	0,95	332,8	340,7	SP
	SU	0,95	214,4	219,1	0,95	220,8	225,5	0,99	191,12	199,04	CP
	CA	0,96	246,7	251,5	0,97	199,8	204,5	0,96	323,9	331,9	SP
	TR	NC	NC	NC	0,89	221,5	226,3	0,99	187,21	195,12	MI
	RF	0,89	211,8	216,6	0,88	219,1	223,9	0,99	165,39	173,31	СР
Rubi	LC	0,93	233,4	238,1	0,95	240,0	244,7	0,96	341,58	349,49	СР
	SU	0,94	232,7	237,5	0,96	236,6	241,3	0,95	352,98	360,90	Nenhum
	CA	0,93	235,5	240,2	0,94	239,9	244,6	0,98	326,7	334,6	SP
	TR	0,95	207,2	212,0	0,94	212,9	217,6	0,99	109,63	117,55	CP
	RF	0,88	211,8	216,6	0,91	246,2	250,9	0,95	345,5	353,5	SP
Westing	LC	0,97	204,0	208,8	0,97	214,5	219,3	0,96	341,58	349,49	СР
	SU	0,94	229,9	234,6	0,89	248,3	253,0	0,95	352,98	360,90	СР
	CA	0,94	209,2	213,9	0,71	289,6	294,3	0,98	326,7	334,6	SP
	TR	0,97	184,4	189,2	0,96	194,6	199,3	0,99	109,6	117,6	SP
	RF	0,97	184,7	189,5	0,99	189,0	193,7	0,95	345,55	353,46	СР

SP-Sem ponderação, CP-Com ponderação, MI-Misto, NC – não convergiu.

LC-Limão Cravo, SU-Tangerina Sunki, CA-Laranjeira Caipira, TR-trifoliata e RF-Limoeiro Rugoso da Flórida

Havia seis repetições para cada porta-enxerto em cada copa, porém foi feito um ajuste único para que fosse possível comparar com o modelo misto. Ficaram, portanto, vinte e cinco repetições e quando foi feito o ajuste para o modelo sem ponderação, foram detectados problemas em dezessete repetições da seguinte forma: em sete delas havia heterogeneidade de variâncias, em quatro havia heterogeneidade de variâncias e presença de autocorrelação residual, em cinco havia autocorrelação e uma repetição não convergiu. O modelo com

ponderação corrigiu treze das dezessete repetições e o modelo misto corrigiu apenas cinco, porém, destas cinco somente em duas ele foi o melhor modelo, de acordo com os critérios utilizados.

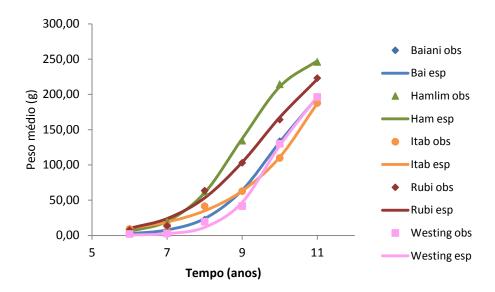


Figura 1- Ajustes médios para o modelo logístico segundo copa

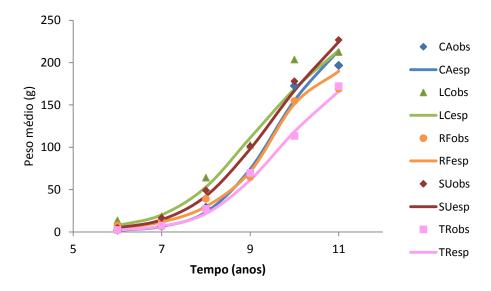


Figura 2- Ajustes médios para o modelo logístico segundo porta-enxerto

4 Conclusões

Concluímos, portanto que neste caso o modelo com ponderação foi o melhor para resolver os problemas de heterocedasticidade e autocorrelação.

5 Agradecimento

Este trabalho foi financiado pela CAPES.

6 Referências

- [1] MAZZINI, A.R.A.; MUNIZ, J.A.; AQUINO, L.H.; SILVA, F.F. (2003). Nunes B., *Análise da curva de crescimento de machos Hereford. Ciênc.Agrotec.* v.25, n.5, p.1105-1112.
- [2] SAS INSTITUTE.SAS/ETS® User's Guide: version 6. 2.ed. Cary, 1995.
- [3] SILVA, F.F; AQUINO, L.H.; OLIVEIRA, A.I.G. *Influência de fatores genéticos e ambientais sobre as estimativas dos parâmetros das funções de crescimento de gado nelore*. Ciênc.Agrotec., ., v.25, n.5, p.1195-1205.