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1 Introduction

Compound Poisson processes are stochastic processes that can model random shocks at
random times. The random times come from a Poisson point process on the real line and the
magnitude of the shocks come from a set of real random variables. They have been successfully
used in finance and insurance models. Stochastic Differential Equations have been used in
many fields of science and technology, having applications in engineering stochastic control,
economics, finance and population biology, for example. Inference for a Poisson point process
is done by the estimation of its intensity function, as this function characterizes the Poisson
point process. In case of homogeneous Poisson processes, these are constant functions and a
real parameter is sufficient to have the estimation done. See [1], [3], [4], [5] and [6] for point
processes and their estimation and [7] and [8] for stochastic differential equations and some
of their applications. In this work we will study a stochastic differential equation driven by a
compound Poisson process. More precisely, we will be interested in the following model:

dX
dt

+α(t)X =
N(0,t]

∑
i=1

Yi (1)

where N is an homogeneous Poisson process with intensity λ and Yi ∼ Y for all i ∈ N∗. We
assume that {N,Yi : i ∈ N∗} is a probabilistically independent set. The random variable Y is
such that EY = 0 and Var(Y ) = σ2 < ∞. The initial condition X(0) is assumed to be a deter-
ministic value. This SDE can be used to model capital growth at time varying interest rates
in an economic environment with random shocks which are not proportional to the capital un-
der interests. Another application of this SDE is in modeling population growth under random
shocks that can either increase or decrease population at random times.

We will focus on the estimation of the Poisson intensity in three different information set-
tings: First, based on the knowledge of a set of N independent trajectories of the process,
{Xi(t) : 0 ≤ t ≤ T,1 ≤ i ≤ N}, then based on N independent evaluations of trajectories of
the process at a fixed time τ, i.e., on {Xi(τ) : 1 ≤ i ≤ N}, and, finally, based on a set of N

independent evaluations of trajectories of the process at possibly different times τi, i.e., on
{Xi(τi) : 1 ≤ i ≤ N}, and on the common initial value X(0). In these three inferential situa-
tions, we construct unbiased, consistent and asymptotically normal estimators, λ̂1, λ̂2, and λ̂3,

respectively, of the Poisson intensity.
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2 The solutions of the compound Poisson driven SDE

The solutions to (1) are the following:

X(t) = e−
∫ t

0 α(z)dz

(∫ t

0
e
∫ z

0 α(w)dw
N(0,z]

∑
i=1

Yidz+X(0)

)
(2)

where the dependence on the initial condition is already present.

3 Estimator construction

3.1 Properties of the solutions

The expectation, variance and centered fourth moment functions, when µ4 = EY 4 < ∞,

associated to the stochastic process X(t) are given by the following theorem
Theorem 1: Let X(t) be the solution to (1). Then, denoting A(t) = e

∫ t
0 α(z)dz, we have

EX(t) = A(t)−1X(0), (3)

VarX(t) = λσ
2A(t)−2

∫ t

0

∫ t

0
A(z)A(s)(z∧ s)dzds, (4)

and

M4X(t) = E(X(t)−EX(t))4 =

λ
2
σ

4A(t)−4
∫ t

0

∫ t

0

∫ t

0

∫ t

0
A(z1)A(z2)A(z3)A(z4)z(1)

(
2z(2)+ z(3)+

µ4

λσ4

)
dz1dz2dz3dz4, (5)

where z(1) ≤ z(2) ≤ z(3) ≤ z(4) is an ordering of z1,z2,z3 and z4.

3.2 The estimators

3.2.1 Estimation with known trajectories

The following estimator is based on the number of occurrences of a Poisson process on the
interval [0,T ]. We will assume that P(Y = 0) = 0. Since we know the whole trajectories, Xi, we
also know the times of the occurrences for each of the independent copies, Ni, of the Poisson
process N for 1 ≤ i ≤ N. These times are those for which the derivative of the solution, Xi,

presents a discontinuity. Let us denote the number of occurrences of Ni in [0,T ] by Oi.

The set {Oi : 1≤ i≤ N} is a random sample of a Poisson distributed random variable with
mean λT. Thus,

λ̂1 =
1

NT

N

∑
i=1

Oi (6)
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is a natural choice for an estimator of λ.

3.2.2 Estimation with known values of trajectories at a fixed time

Let
K (t) = σ

2A(t)−2
∫ t

0

∫ t

0
A(z)A(s)(z∧ s)dzds. (7)

Based on (4) we define the estimator of the intensity by:

λ̂2 =
1

K (τ)

∑
N
i=1

(
Xi(τ)−X(τ)

)2

N−1
. (8)

where X(τ) = ∑
N
i=1 Xi(τ)

N .

3.2.3 Estimation with known values of trajectories at distinct times and known initial
condition

Also based on (4) and on a convenient transformation of variables we define the following
intensity estimator

λ̂3 =
1
N

N

∑
i=1

(
Xi(τi)−X(0)A−1(τi)

)2

K (τi)
. (9)

4 Main results

Now we present the main results concerning the properties of λ̂1, λ̂2, and λ̂3.

Theorem 2: Let Xi(t), 1 ≤ i ≤ N, be a solution to the Poisson driven SDE: dXi
dt +α(t)Xi =

∑
Ni(0,t]
j=1 Yi, j, where {Ni : 1 ≤ i ≤ N} is an i.i.d. set of Poisson processes with intensity λ, the

initial condition is the same for all i, Xi(0) = X(0), and α : [0,T ]→ R is a known integrable

function. Assume that {Yi, j : i, j ∈ N} is an i.i.d. set of random variables distributed like Y

with EY = 0 and Var(Y ) = σ2 < ∞. Assume that σ is known and that {Ni,Yi, j : i, j ∈ N} is an

independent set of random elements. (These assumptions will be called [H ] from here on).

Suppose we know the set of solutions {Xi(t) : 0≤ t ≤ T, 1≤ i≤ N}. Let Oi be the number

of discontinuities of the derivative of Xi on [0,T ].
Then λ̂1 =

1
NT ∑

N
i=1Oi is an unbiased, consistent and asymptotically normal estimator of λ,

and we have the following convergence in distribution:
√

T N(λ̂1−λ) N (0,1), as N→ ∞.

From here on we will use the following notation:

R(t) =

∫ t
0
∫ t

0
∫ t

0
∫ t

0 A(z1)A(z2)A(z3)A(z4)z(1)
(

2z(2)+ z(3)+
µ4

λσ4

)
dz1dz2dz3dz4(∫ t

0
∫ t

0 A(z1)A(z2)z(1)dz1dz2
)2 . (10)
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Theorem 3: Assume condition [H ]. Additionally, suppose that EY 4 < ∞. Let τ be a

fixed time in (0,T ]. Suppose we know the set of evaluations of the solutions Xi at this time

only, i.e., we only know {Xi(τ) : 1 ≤ i ≤ N}. Then λ̂2 = 1
K (τ)

∑
N
i=1(Xi(τ)−X(τ))

2

N−1 , where K (t) =

σ2A(t)−2 ∫ t
0
∫ t

0 A(z)A(s)(z∧s)dzds and A(t) = e
∫ t

0 α(z)dz, is an unbiased, consistent and asymp-

totically normal estimator of λ. We have the following convergence in distribution:

√
N(λ̂2−λ) N

(
0,λ2 (R(τ)−1)

)
. (11)

Theorem 4: Assume condition [H ] and EY 4 < ∞. Let τi, 1 ≤ i ≤ N, be fixed times in

(0,T ]. Suppose we know the set of evaluations {Xi(τi) : 1 ≤ i ≤ N} and the initial condition

X(0) which is assumed to be the same for all trajectories Xi, i.e., for all i, Xi(0) = X(0). Then

λ̂3 =
1
N ∑

N
i=1

(Xi(τi)−X(0)A−1(τi))
2

K (τi)
, where K (t) = σ2A(t)−2 ∫ t

0
∫ t

0 A(z)A(s)(z∧s)dzds and A(t) =

e
∫ t

0 α(z)dz, is an unbiased estimator of λ. Moreover, its variance is given by:

Var(λ̂3) = λ
2 1

N2

N

∑
i=1

(R(τi)−1) . (12)

We always have R(τi)> 1. Now, letting N→∞, if the set of times τi is bounded away from zero

by a positive constant δ, then we will also have R(τi) ≤ C(δ,T ) < ∞. Under this assumption

λ̂3 is a consistent estimator of λ. If, in addition, we assume that EY 6 < ∞ then λ̂3 is also

asymptotically normal and we have:

√
N(λ̂3−λ) N

(
0,λ2 1

N

N

∑
i=1

(R(τi)−1)

)
. (13)

5 Final remarks

Under the hypothesis of Theorem 4, we have two constants, c(δ,T ) and C(δ,T ) such that,
for all i, 1 < c(δ,T )≤R(τi)<C(δ,T ) and, consequently,

√
N(λ̂3−λ) N

(
0,λ2v

)
for some

v ∈ [c(δ,T )−1,C(δ,T )−1].
In case we know the whole solutions, which is our first estimation setting, we can relax

the assumption on the initial condition and assume different initial conditions Xi(0) = ci ∈ R
for each i from 1 to N. As a matter of fact, even if the initial condition is assumed to be be a
random variable such that {X(0),N,Yi : i ∈ N} is an independent set, λ̂1 will still be unbiased,
consistent and asymptotically normal. Note that the initial condition does not change the num-
ber of discontinuities of the derivatives of the trajectories. This number is exactly the number
of occurrences of the Poisson process which is all we need to estimate λ.
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We observe that since it is possible to obtain expressions for the variance of the estimators
λ̂1, λ̂2, and λ̂3 we can construct confidence intervals for λ.

In practice, given that we often have to deal with small sample sizes, it is expected that
all three estimators will not perform very well if the product of the intensity by the time span
is too small. If the sample size can not be increased, a way to obtain more reliable estimates
is to measure the solutions for as greater values of T, τ or τi as possible. Concerning λ̂1,

very small values of Yi may bring difficulties in finding discontinuities on the derivatives. This
will introduce a negative bias since the actual number of occurrences will be greater than the
measured one.
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