Relações lineares entre caracteres de tremoço branco

Alberto Cargnelutti Filho¹

Marcos Toebe²

Cláudia Burin²

Bruna Mendonça Alves²

Giovani Facco²

Gabriele Casarotto³

1 - Introdução

Por apresentar elevada produção de massas verde e seca, na fase de florescimento, o tremoço branco (*Lupinus albus* L.) é utilizado em sistemas de rotação de culturas. A massa seca de tremoço branco oscilou entre 1.010kg ha⁻¹ e 9.540kg ha⁻¹, em função da cultivar, da época de semeadura e do momento de avaliação, em dias após a semeadura [1]. A média de 87 amostras de tremoço branco, coletadas de vários experimentos foi de 10.114kg ha⁻¹ de massa seca, sendo que, em 22 amostras, a massa seca foi inferior a 7.000kg ha⁻¹, em 20, foi superior a 13.000kg ha⁻¹ e as demais 45 amostras apresentaram massa seca intermediária [2].

Diferentemente do melhoramento genético da maioria das culturas que visam ao aumento da produtividade de grãos, nas plantas de cobertura de solo, normalmente, o maior interesse é em relação à quantidade de massa produzida. Considerando que a quantificação das massas verde e seca é de caráter destrutivo, é importante conhecer as relações dessas massas com outros caracteres que possam ser mensurados de modo não destrutivo, e utilizados na seleção indireta.

Estudos de relações lineares em caracteres de crambe (*Crambe abyssinica* Hochst) indicaram que o número de frutos por planta tem relação linear positiva com a produtividade de grãos e pode ser utilizado para seleção indireta [3]. No entanto, não foram encontrados estudos de relações de caracteres que podem ser mensurados sem a destruição das plantas com as massas verde e seca de tremoço branco. Assim, o objetivo deste trabalho foi avaliar as relações entre caracteres de tremoço branco e identificar caracteres para a seleção indireta.

¹ Departamento de Fitotecnia, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brasil. E-mail: alberto.cargnelutti.filho@gmail.com

² Programa de Pós-Graduação em Agronomia, UFSM, Santa Maria, RS, Brasil.

³ Programa de Pós-Graduação em Agronomia, UFRGS, Porto Alegre, RS, Brasil. Agradecimentos: Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, pelas bolsas concedidas. À Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, pelo auxílio financeiro.

2 - Material e Métodos

Foi conduzido um experimento com a cultura de tremoço branco (*Lupinus albus* L.) numa área experimental de 50m × 50m, localizada no Departamento de Fitotecnia da Universidade Federal de Santa Maria, Santa Maria, Estado do Rio Grande do Sul (latitude 29°42'S, longitude 53°49'W e 95m de altitude). A semeadura do tremoço branco foi realizada a lanço, no dia 13 de junho de 2011. A adubação de base foi de 30kg ha⁻¹ de N, 120kg ha⁻¹ de P₂O₅ e 120kg ha⁻¹ de K₂O. Em 17 de novembro de 2011 (157 dias após a semeadura), foram coletadas, na área experimental, aleatoriamente, 400 plantas. A população nesse momento era de 146.667 plantas ha⁻¹. Em cada uma das 400 plantas, foram mensurados os seguintes caracteres: altura de planta (AP, considerando a distância da superfície do solo até a inserção da última folha), em cm; diâmetro de caule (DC, medido na superfície do solo com auxílio de paquímetro), em mm; número de vagens (NV); massa verde de parte aérea (MV), em g planta⁻¹; e massa seca de parte aérea (MS), em g planta⁻¹.

Para cada um dos cinco caracteres (AP, DC, NV, MV e MS), foram calculados a média e o coeficiente de variação e a seguir, para visualizar as relações entre os caracteres, foram feitos diagramas de dispersão. Após, foi calculada a matriz de coeficientes de correlação linear de Pearson (r) entre os caracteres e, por meio do teste t de *Student*, a 5% de probabilidade de erro, foi verificada a significância do r. Na matriz de coeficientes de correlação linear de Pearson (r), foi realizado o diagnóstico de multicolinearidade [4] e interpretado de acordo com critério de [6]. Depois disso, foram realizadas análises de trilha (*path analysis*) das variáveis principais (MV e MS) em função das variáveis explicativas (AP, DC e NV). As análises estatísticas foram realizadas com o auxílio do programa GENES [5] e do aplicativo Office Excel[®].

3 - Resultados e Discussão

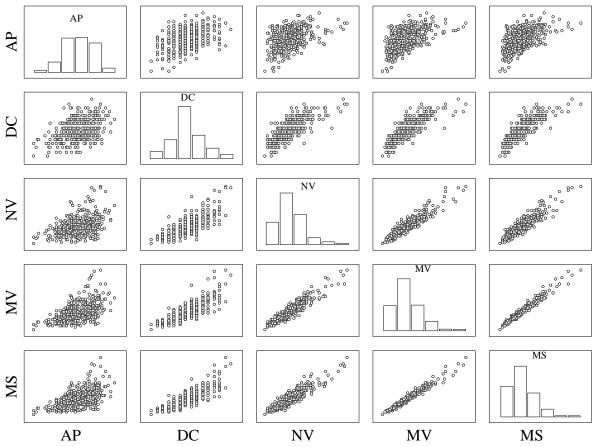

As médias dos caracteres mensurados em 400 plantas de tremoço branco (Tabela 1) revelaram adequado desenvolvimento das plantas. Resultados próximos a esses foram relatados para a cultura de tremoço branco [1] e [2]. Entre os caracteres de tremoço branco, o coeficiente de variação (CV) variou de 12,54% para a altura de planta a 51,83% para a massa seca de parte aérea. Maior variabilidade de caracteres produtivos, como a produtividade de grãos (CV=61,95716%), em relação aos morfológicos, como a altura de planta (CV=19,53659%), também foi verificada na cultura de crambe [3]. Essa variabilidade existente é importante e confere adequabilidade ao estudo das relações entre os caracteres, por meio das análises de correlação e de trilha.

Tabela 1. Média, coeficiente de variação (CV) e estimativas dos coeficientes de correlação linear de Pearson entre caracteres mensurados em 400 plantas de tremoço branco (*Lupinus albus* L.).

Carateres ⁽¹⁾	Média	CV(%)	AP	DC	NV	MV	MS
AP	105,96	12,54	1	0,4256*	0,4206*	0,5321*	0,5387*
DC	11,45	22,55	0,4256*	1	0,7719*	0,8304*	0,8460*
NV	26,14	47,58	0,4206*	0,7719*	1	0,9278*	0,9182*
MV	337,23	50,82	0,5321*	0,8304*	0,9278*	1	0,9828*
MS	54,55	51,83	0,5387*	0,8460*	0,9182*	0,9828*	1

⁽¹⁾ AP, altura de planta, em cm; DC, diâmetro de caule, em mm; NV, número de vagens; MV, massa verde de parte aérea, em g planta⁻¹; e MS, massa seca de parte aérea, em g planta⁻¹. * Significativo a 5% de probabilidade de erro pelo teste t.

Os diagramas de dispersão entre os caracteres revelaram padrões de linearidade (Figura 1). Então, diante das considerações, em relação ao adequado desenvolvimento das plantas, a ampla variabilidade dos dados e a existência de padrões de linearidade, aliado ao elevado número de plantas avaliadas, pode-se inferir que esse banco de dados oferece credibilidade ao estudo de relações lineares entre esses caracteres.

Figura 1. Representação gráfica da distribuição de frequência (na diagonal) e das relações entre: altura de planta (AP); diâmetro de caule (DC); número de vagens (NV); massa verde de parte aérea (MV); e massa seca de parte aérea (MS) de 400 plantas de tremoço branco (*Lupinus albus* L.).

Os coeficientes de correlação linear de Pearson (r) entre os caracteres (0,4206≤r≤0,9828) (Tabela 1) revelam associações lineares positivas e confirmam a existência de padrões de linearidade (Figura 1). As massas verde e seca de parte aérea apresentaram maior grau de associação linear com o número de vagens, comparada com o diâmetro de caule e altura de planta, que apresentaram, respectivamente, graus de associação linear intermediário e menor (Tabela 1). Portanto, esses resultados sugerem que plantas de tremoço branco com maior número de vagens estão associadas a plantas com maiores massas verde e seca de parte aérea. No entanto, apenas por meio dos coeficientes de correlação, não é possível inferir qual dos caracteres tem efeito direto nas massas verde e seca de parte aérea de tremoço branco. Assim, a análise de trilha é um procedimento adequado para inferir sobre as verdadeiras relações entre os caracteres.

O diagnóstico de multicolinearidade na matriz de coeficientes de correlação linear de Pearson, entre as variáveis explicativas altura de planta (AP), diâmetro de caule (DC) e número de vagens (NV), revelou número de condição (NC) igual a 9,20 (Tabela 2), o que classifica a matriz como de colinearidade baixa, conforme critério estabelecido em [6]. Assim, as análises de trilha das massas verde (MV) e seca de parte aérea (MS) de tremoço branco, em função das variáveis explicativas AP, DC e NV, podem ser realizadas adequadamente [5].

Tabela 2. Estimativas dos coeficientes de correlação linear de Pearson e dos efeitos diretos e indiretos dos caracteres altura de planta (AP), diâmetro de caule (DC) e número de vagens (NV) sobre a massa verde de parte aérea (MV) e a massa seca de parte aérea (MS) de tremoço branco (*Lupinus albus* L.).

Efeito	Variável principal			
	MV	MS		
Direto de AP sobre	0,1420	0,1481		
Indireto de AP via DC	0,1052	0,1288		
Indireto de AP via NV	0,2849	0,2618		
Correlação de Pearson (r)	0,5321*	0,5387*		
Direto de DC sobre	0,2472	0,3026		
Indireto de DC via AP	0,0604	0,0630		
Indireto de DC via NV	0,5228	0,4803		
Correlação de Pearson (r)	0,8304*	0,8460*		
Direto de NV sobre	0,6773	0,6223		
Indireto de NV via AP	0,0597	0,0623		
Indireto de NV via DC	0,1908	0,2336		
Correlação de Pearson (r)	0,9278*	0,9182*		
Coeficiente de determinação	0,9092	0,9072		
Variável residual	0,3013	0,3047		
Número de condição	9,20	9,20		

^{*} Significativo a 5% de probabilidade de erro pelo teste t, com 398 graus de liberdade.

A massa verde de parte aérea (MV) apresentou correlação linear positiva (r=0,9278) e efeito direto (0,6773) com mesmo sinal e de magnitude semelhante com o número de vagens (NV), o que evidencia relação de causa e efeito entre esses caracteres (Tabela 2). Assim, pode-se inferir que as plantas com maior número de vagens são aquelas com maior massa verde de parte aérea. Em menor magnitude, a MV apresentou associação linear com o DC (r=0,8304) e a AP (r=0,5321). Porém, os efeitos diretos do DC (0,2472) e da AP (0,1420) sobre a MV foram inferiores, o que demonstra não haver relação de causa e efeito, e, portanto, a associação existente é explicada pelos maiores efeitos indiretos via NV (DC=0,5228; AP=0,2849). Em função da forte associação linear (r=9828) entre MV e MS (Tabela 1), o mesmo raciocínio pode ser realizado em relação à massa seca de parte aérea (MS). Assim, pode-se inferir que a seleção indireta para a MV e a MS deve ser realizada com base no NV.

Na prática, esses resultados evidenciam que é possível selecionar as plantas de tremoço branco na área experimental, por meio da contagem do número de vagens, sem a necessidade de destruir as plantas para a colheita. Esse fato é importante, pois possibilita selecionar as plantas com maiores massas verde e seca de parte aérea e ainda avaliar a produtividade de grãos delas.

4 - Conclusão

Na cultura de tremoço branco (*Lupinus albus* L.), o número de vagens por planta tem relação linear positiva com as massas verde e seca e pode ser utilizado para seleção indireta.

5 - Referências

- [1] BARRADAS, C.A.A. et al. Comportamento de adubos verdes de inverno na região serrana fluminense. **Pesquisa Agropecuária Brasileira**, v.36, p.1461-1468, 2001.
- [2] BORKERT, C.M. et al. Nutrientes minerais na biomassa da parte aérea em culturas de cobertura de solo. **Pesquisa Agropecuária Brasileira**, v.38, p.143-153, 2003.
- [3] CARGNELUTTI FILHO, A. et al. Tamanho de amostra e relações lineares de caracteres morfológicos e produtivos de crambe. **Ciência Rural**, v.40, p.2262-2267, 2010.
- [4] CRUZ, C.D.; CARNEIRO, P.C.S. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 2003. V.2. 585p.
- [5] CRUZ, C.D. GENES a software package for analysis in experimental statistics and quantitative genetics. **Acta Scientiarum Agronomy**, v.35, p.271-276, 2013.
- [6] MONTGOMERY, D.C.; PECK, E.A. **Introduction to linear regression analysis**. New York: John Wiley & Sons, 1982. 504p.