Intervalos de Confiança via Simulação Monte Carlo: O estado da arte
Resumo
A estimação por intervalos é uma das técnicas da inferência estatística mais utilizadas nas diversas áreas da ciência. O intervalo de confiança exato não é viável nos casos em que não se conhece a distribuição da estatística usada na estimação do parâmetro de interesse. Assim, uma alternativa é o uso de simulação Monte Carlo para construção do intervalo, os quais apresentam boa performance no que se refere à real probabilidade de cobertura comparativamente ao coeficiente de cobertura desejado. Este artigo se dedica a descrever três dos principais métodos Monte Carlo usados para este fim. Além de fazer um contra-ponto sobre prós e contras de cada método, fornecemos também exemplos de aplicaçoes envolvendo estimação de tamanho populacional via captura-recaptura, e estimação do risco relativo em conglomerados espaciais.Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).