Uma breve introdução ao Conjunto de Cantor

Elder Cesar de Almeida

elderufop@gmail.com

Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil

Thiago Fontes Santos

santostf@iceb.ufop.br

Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil

Resumo

Neste trabalho falaremos sobre o interessante conjunto de Cantor, que desperta a curiosidade de muitos por seu modo de construção. Veremos também algumas propriedades e suas demonstrações, tais como é não vazio, não contém intervalo, é perfeito, é desconexo, é não enumerável e tem um vínculo intrínseco na base ternária. Dentre esses e outros assuntos teremos também exemplos para que o leitor entenda de forma clara o conteúdo desta apresentação.

Palayras-chave

Cantor, Analise, Base Ternária.

1 Introdução

George Cantor (1845-1918) foi o criador da teoria dos conjuntos, que foi uma grande contribuição para matemática moderna. Seu trabalho tinha o foco de entender as diferentes maneiras da infinitude dos conjuntos. Um de seus trabalhos é o conjunto que iremos abordar, que doravante denotaremos por C.

Considere o intervalo $I_0=[0,1]$, dividiremos este intervalo em três partes iguais e na sequência removeremos o terço médio aberto. Os conjuntos que restam são dois intervalos fechados, a saber, $\left[0,\frac{1}{3}\right]$ e $\left[\frac{2}{3},1\right]$. Denotaremos por I_1 a união destes intervalos. Note que o comprimento de cada intervalo de I_1 é $\frac{1}{3}$ e $I_1 \subset I_0$.

A seguir, dividiremos cada intervalo que compõe I_1 em três partes iguais e removeremos o terço médio aberto de cada um deles. Agora restaram quatro intervalos fechados, que denotaremos por I_2 a união destes intervalos, ou seja,

$$I_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

Observe que cada intervalo que compõe I_2 tem comprimento $\frac{1}{3^2}$ e $I_2 \subset I_1$

Repetindo esse processo sucessivamente, obteremos intervalos I_n que são união de 2^n intervalos fechados, onde cada um deles tem comprimento $\frac{1}{3^n}$. Além disso temos que $I_{n+1} \subset I_n \ \forall n \in \mathbb{N}$. A figura (1) ilustra alguns passos que fizemos acima.

Definição 1. O conjunto de Cantor C é a interseção infinita dos intervalos $I_n, n \in \mathbb{N}$ que foram obtidos acima, ou seja,

$$\mathcal{C} = \bigcap_{n=1}^{\infty} I_n.$$

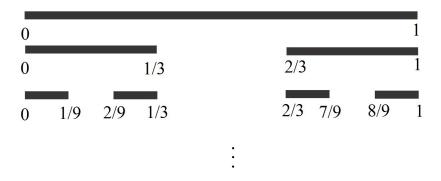


Figura 1: Construção do Conjunto de Cantor

2 Algumas propriedades de C.

A próxima proposição trata de mostrar que dentro do conjunto de cantor (C) existem pontos chamados pontos de fronteira, nos informando que o Conjunto é não vazio.

Proposição 1. O Conjunto C é não vazio.

Demonstração. Com efeito, observe que cada I_n é um intervalo fechado pois é uma união finita de intervalos fechados não vazios. Como $I_{n+1} \subset I_n \subset [0,1]$, $\forall n \in \mathbb{N}$, usando o teorema dos intervalos encaixados(Cf. [2, 1]), podemos

afirmar que $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Esta interseção infinita é justamente o conjunto \mathcal{C} definido acima.

A próxima proposição nos mostra que não existem intervalos dentro do conjunto de Cantor através do conceito aplicado pela propriedade arquimediana, ou seja \mathcal{C} é totalmente desconexo.

Proposição 2. O Conjunto C não contém intervalos.

Demonstração. Seja $I=(a,b)\subseteq [0,1]$, assuma b>a. Considere o seguinte conjunto :

$$M = \{ n \in \mathbb{N} : -\log_3(b - a) < n \}.$$

Vamos mostrar que $M \neq \emptyset$. Note que, como $I \subset [0,1]$ então b-a < 1. Daí, $-log_3(b-a) > 0$ e assim pela propriedade arquimediana, existe $m \in \mathbb{N}$ tal que $-log_3(b-a) < m$ portanto $M \neq \emptyset$.

Pelo princípio da boa ordenação (Cf.[2]) M possui um elemento mínimo, ou seja, $\exists k \in M$ tal que $k \leq x, \forall x \in M$. Deste modo, temos as seguintes desigualdades equivalentes:

$$-log_3(b-a) < k$$
$$log_3(b-a) > -k$$
$$b-a > 3^{-k}$$

Mas I_k é a união de intervalos de [0,1] com comprimento $\frac{1}{3^k}$, logo $I \nsubseteq I_k$ e portanto $I \notin \mathcal{C}$.

Na próxima proposição mostraremos que \mathcal{C} é perfeito ou seja, dados $p \in \mathcal{C}$ e $\epsilon > 0$ arbitrário, toda vizinhança aberta $V_{\epsilon}(p)$ contêm pontos de \mathcal{C} diferente de p. **Proposição 3.** O Conjunto \mathcal{C} é perfeito.

 $\begin{array}{l} \textit{Demonstração}. \ \ \text{Fixe qualquer} \ \epsilon > 0 \ \text{e um ponto} \ p \in \mathcal{C}. \ \ \text{Seja} \ n \in \mathbb{N} \ \text{suficientemente grande tal que} \ \frac{1}{3^n} < \epsilon. \ \ \text{Então} \ p \ \acute{\text{e}} \ \text{garantido em um dos intervalos} \ I_n, \\ \text{para algum} \ n \in \mathbb{N}, \ \text{que compõe} \ \mathcal{C}, \ \text{de tamanho} \ \frac{1}{3^n}. \ \ \text{Existem infinitos pontos} \ \text{de fronteira do conjunto} \ \mathcal{C} \ \text{contidos neste intervalo e além disso estão todos contidos} \\ \text{no intervalo aberto} \ (p-\epsilon,p+\epsilon). \ \ \text{Assim}, \ p \ \acute{\text{e}} \ \text{um ponto} \ \text{de acumulação do conjunto} \\ \mathcal{C}. \ \ \text{Como estamos considerando qualquer ponto} \ p \in \mathcal{C} \ \text{então} \ \mathcal{C} \ \acute{\text{e}} \ \text{perfeito}. \end{array} \ \Box$

3 Descrição na base Ternária

Dado um $x \in [0, 1]$, sempre podemos reescrevê-lo da seguinte maneira na base ternária:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n},$$

onde $a_n \in \{0, 1, 2\}$.

A representação na base ternária é considerada útil para descrever os elementos do conjunto de Cantor. A construção clássica \mathcal{C} é via trisecção dos intervalos envolvidos e posterior remoção dos terços médios abertos. Em cada etapa dividiremos os intervalos em três partes iguais, e a seguir faremos um vínculo com os símbolos da base 3:

- representaremos com 0 os elementos que ficam no terço esquerdo da trisecção.
- representaremos com 1 os elementos que ficam no terço médio da trisecção.
- representaremos com 2 os elementos que ficam no terço direito da trisecção.

Vamos verificar que a representação estabelecida acima faz sentido para a trisecção de [0, 1], os demais passos seguem o mesmo processo.

Lema 1. Seja
$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n} \in [0, 1]$$
. Então:

1. Se
$$a_1 = 0$$
 então $x \in [0, \frac{1}{3}]$.

2. Se
$$a_1 = 1$$
 então $x \in [\frac{1}{3}, \frac{2}{3}]$.

3. Se
$$a_1 = 2$$
 então $x \in [\frac{2}{3}, 1]$.

Demonstração. Provaremos o item 1. Com efeito, como $a_1=0$ e $a_n\leqslant 2$, $\forall n\in\mathbb{N}$, temos que

$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n} = \sum_{n=2}^{\infty} \frac{a_n}{3^n}$$

$$\leq \sum_{n=2}^{\infty} \frac{2}{3^n}$$

$$= 2\sum_{n=2}^{\infty} \frac{1}{3^n}$$

$$= 2\left(\frac{\frac{1}{3^2}}{1 - \frac{1}{3}}\right) = \frac{1}{3}$$

A prova dos demais itens é feita de maneira inteiramente análoga.

Pela representação feita acima, vemos que os elementos de \mathcal{C} são os pontos de [0,1] cuja a expansão na base 3 tem símbolos 0 ou 2, com exceção dos pontos de fronteira que têm dupla representação uma delas contendo o dígito 1, por exemplo $1/3=(0,10000...)_3=(0,02222...)_3$.

Exemplo 1. $1/4 \in \mathcal{C}$.

De fato, a representação de $\frac{1}{4}$ na base 3 é $(0,0202...)_3$ sendo assim, $\frac{1}{4} \in C$. Além disso 1/4 não é ponto de fronteira de Cantor.

Proposição 4. O Conjunto C é não enumerável.

Demonstração. Definiremos uma função $\varphi: \mathcal{C} \longrightarrow [0,1]$ como segue:

$$\varphi\left(\sum_{n=1}^{\infty} \frac{a_n}{3^n}\right) := \sum_{n=1}^{\infty} \frac{(a_n/2)}{2^n}$$

Iremos mostrar que φ é sobrejetiva. Dado $y\in[0,1]$, podemos escrevê-lo da forma $y=\sum_{n=1}^\infty \frac{a_n}{2^n}$, sua representação na base 2 (onde $a_n\in[0,1]$). Tomemos,

$$x = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}$$
. Observe que $x \in C$, pois $b_n = 2a_n \in \{0, 2\}$. Além disso

$$\varphi\left(\sum_{n=1}^{\infty} \frac{2a_n}{3^n}\right) = \sum_{n=1}^{\infty} \frac{\frac{b_n}{2}}{2^n} = \sum_{n=1}^{\infty} \frac{\frac{2a_n}{2}}{2^n} = y.$$

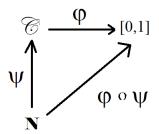


Figura 2: Composição das funções, com φ e ψ sobrejetivas e $\varphi \circ \psi$.

Portanto φ é a sobrejeção de \mathcal{C} em [0, 1].

Se $\mathcal C$ fosse enumerável então existiria uma sobrejeção de $\psi:\mathbb N\longrightarrow \mathcal C$ de modo que $\varphi\circ\psi$ é uma sobrejeção de $\mathbb N$ em [0,1], uma contradição. Logo $\mathcal C$ é não enumerável.

Agradecimentos

Agradeço primeiramente a Deus, por me proporcionar uma oportunidade de realizar uma etapa muito importante na minha carreira acadêmica, à Pró-Reitoria de Graduação da UFOP e ao PET Matemática pelo apoio e incentivo para a realização deste trabalho, ao meu tutor e orientador Thiago Fontes Santos e aos meus colegas Petianos.

Referências

- [1] Robert G. Bartle. *Introduction to Real Analysis*. Eastern Michigan University, Ypsilanti, 2000.
- [2] Elon Lages Lima. *Análise Real*. Associação Instituto Nacional de Matemática Pura e Aplicada IMPA, Rio de Janeiro, 2004.
- [3] Elon Lages Lima. *Curso de Análise Volume 1*. Associação Instituto Nacional de Matemática Pura e Aplicada IMPA, Rio de Janeiro, 2004.