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We establish the existence of positive solution for the following class of quasilinear
elliptic problem

(P )

{
−∆pu+ V (x)|u|p−2u = f(u) in RN ,

u > 0, in RN ; u ∈ D1,p(RN),

where ∆p is the p-Laplacian, V is a bounded non negative vanishing potential and
f has a subcritical growth at infinity. The technique used here is a truncation argu-
ment together with the variational approach. We impose the following hypothesis
on our functions V and f :
V : RN → R is a continuous function verifying
(V1) : V (x) ≥ 0,∀ x ∈ RN

(V2) : V (x) ≤ V∞,∀ x ∈ B1(0) and for some V∞ > 0.

(V3) : ∃ Λ > 0 and ∃ R > 1 such that inf
|x|>R

(
|x|
R

) p2

p−1

V (x) ≥ Λ.

f : R→ R is continuous function verifying

(f1) : lim sup
s→0+

sf(s)

sp∗
= 0, where p∗ = pN

N−p , N > p > 1.

(f2) : ∃ α ∈ (p, p∗) such that lim
s→∞

sf(s)

sα
= 0.

(f3) : ∃ θ > p such that θF (s) ≤ sf(s),∀s > 0.
Equations involving the p-Laplacian operator appear in many problems of nonlinear
diffusion. Just to mention, in nonlinear optics, plasma physics, condensed matter
physics and in modeling problems in non Newtonian fluids. For more information
on the physical background we refer to [15]. For the case when p = 2 and the
potential is bounded from below by a positive constant V0 > 0, we cite [3, 4, 5, 8,
9, 11, 13, 20, 24, 26, 27, 28, 29], and references therein . In [18], in addition to the
above assumptions, the authors consider a local condition, namely, min

x∈Ω
V < min

x∈∂Ω
V,

where Ω ⊂ RN is a open bounded set, instead of the global condition imposed by
Rabinowitz in [20]. When p 6= 2, see [6, 10, 12]. When p = 2 and V is the zero mass
case, that is lim

|x|→∞
V (x) = 0, we cite [1, 2, 25] and the recent paper [7] by Alves and

Souto. The result presented here for 1 < p < N extends that one in [7] for p = 2. In
[7] the presence of Hilbertian structure and some compact embeddings provide the
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convergence of the gradient. In the case studied here, we loose this structure and
we do not obtain the convergence so directly. To overcome this problem we adapt
a result of [22, proposition 1.5, page 22], whose ideas come from [17, 19]. Together
with this difficulty there are others. For instance, in the present situation our space
is no longer Hilbert which forces us to obtain new estimates. Now we state the main
result of this work.
Teorema : Suppose that V and f satisfy, respectively, (V1)− (V3) and (f1)− (f3).
Then there is a constant Λ∗ = Λ∗(V∞, θ, p, c0) > 0 such that problem (P) has a
positive solution, for all Λ ≥ Λ∗.
In order to achieve this, we first build an auxiliary problem (AP ). Then we solve
the problem (AP ) using variational methods and to finish we show that the solution
of (AP ) is also a solution of (P).
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