p-Laplacian with fast growing gradient

Bueno, H.^a e Ercole, G.^a

^a Departamento de Matemática, Universidade Federal de Minas Gerais, 30.123.970 - Belo Horizonte - MG. The authors thank the support of FAPEMIG and CNPq. hamilton@mat.ufmg.br, grey@mat.ufmg.br

We consider the existence of positive solutions for the Dirichlet problem in two positive parameters λ and β

$$\begin{cases} -\Delta_p u = \lambda h(x, u) + \beta f(x, u, \nabla u) & in \ \Omega, \\ u = 0 & on \ \partial\Omega, \end{cases}$$
(P)

where h and f are continuous nonlinearities satisfying

(H1)
$$0 \le \omega_1(x) u^{q-1} \le h(x, u) \le \omega_2(x) u^{q-1} (1 < q < p);$$

(H2)
$$0 \le f(x, u, v) \le \omega_3(x)u^a |v|^b$$
,

where ω_i , $1 \leq i \leq 3$, are nonnegative weights in the smooth and bounded domain $\Omega \subset \mathbb{R}^N$ and a, b > 0. We prove the existence of a region \mathcal{D} in the $\lambda\beta$ -plane where the Dirichlet problem has at least one positive solution.

Our proof rests on a version of the classical result of Tolksdorf and Lieberman, which provides *a priori* bounds for the gradient.

Theorem [Tolksdorf-Lieberman] Assume that $\Omega \subset \mathbb{R}^N$ is a bounded, smooth domain and that $g \in L^{\infty}(\Omega)$. Then there exists a positive constant \mathcal{K} , depending only on pand Ω , such that

$$\left\|\nabla u\right\|_{\infty} \le \mathcal{K} \left\|g\right\|_{\infty}^{\frac{1}{p-1}}$$

where $u \in C^1(\overline{\Omega}) \cap W^{1,p}_0(\Omega)$ is the only weak solution of

$$\begin{cases} -\Delta_p u = g & in \ \Omega \\ u = 0 & on \ \partial\Omega \end{cases}$$

Let u_1 be the first positive eigenfunction of the *p*-Laplacian with weight ω_1 , that is,

$$\begin{cases} -\Delta_p u_1 = \lambda_1 \omega_1 u_1^{p-1} & \text{in } \Omega, \\ u_1 = 0 & \text{on } \partial \Omega \end{cases}$$

with $||u_1||_{\infty} = 1$ and let $\phi \in W_0^{1,p}(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$ be the solution of the problem

$$\begin{cases} -\Delta_p \phi = \omega & \text{in } \Omega \\ \phi = 0 & \text{on } \partial \Omega \end{cases}$$

where $\omega(x) := \max_{i \in \{1,2,3\}} w_i(x)$. We denote

$$\gamma := \frac{\mathcal{K} \|\omega\|_{\infty}^{\frac{1}{p-1}}}{\|\phi\|_{\infty}},$$

where \mathcal{K} stands for the constant of the result of Tolksdorf and Lieberman.

Our main result is

Theorem: Assume that h and f are continuous and satisfy (H1) and (H2). There exists a region \mathcal{D} in the $\lambda\beta$ -plane such that if $(\lambda, \beta) \in \mathcal{D}$ the Dirichlet problem (P) has at least one positive solution u satisfying, for some positive constants ϵ and M:

$$\epsilon u_1 \le u \le \frac{M\phi}{\|\phi\|_{\infty}}$$
 and $\|\nabla u\|_{\infty} \le \frac{\mathcal{K} \|\omega\|_{\infty}^{\frac{1}{p-1}} M}{\|\phi\|_{\infty}}.$

To prove our result we define for each $u \in C^1$,

$$F^{u}(x,\xi) := \lambda \omega_{1}(x)\xi^{q-1} + \lambda \left(h(x,u(x)) - \omega_{1}(x)u(x)^{q-1} \right) + \beta f(x,u(x),\nabla u(x)) \in C(\overline{\Omega}).$$

We observe that $F^{u}(x, u) = \lambda h(x, u) + \beta f(x, u, \nabla u).$

Lemma: There exist positive constants ϵ and M, and a region \mathcal{D} in the $\lambda\beta$ -plane such that, if $(\lambda, \beta) \in \mathcal{D}$ and

$$u \in \mathcal{F} := \left\{ u \in C^1(\overline{\Omega}) : 0 \le u \le \frac{M\phi}{\|\phi\|_{\infty}} \quad and \quad \|\nabla u\|_{\infty} \le \gamma M \right\},\$$

then the Dirichlet problem

$$\begin{cases} -\Delta_p U = F^u(x, U) & in \ \Omega \\ U = 0 & on \ \partial\Omega. \end{cases}$$
(P_a)

has $\underline{u} := \epsilon u_1$ and $\overline{u} = \frac{M\phi}{\|\phi\|_{\infty}}$ as an ordered pair of sub- and super-solution and a unique positive solution U.

The lemma is proved by applying the sub- and super-solution method, inspired by the seminal paper of Ambrosetti, Brezis and Cerami [1]. The uniqueness of U follows from well-known results proved in [3].

We define the operator

$$T: \mathcal{F} \subset C^1(\overline{\Omega}) \longrightarrow C^{1,\alpha}(\overline{\Omega}) \cap W^{1,p}_0(\Omega) \subset C^1(\overline{\Omega})$$
$$u \longrightarrow U,$$

The existence of a fixed point of T follows from Schauder's fixed point theorem.

Referências

- A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Functional Analysis 122 (1994), 519-543.
- [2] J. I. Díaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris 305 Série I (1987), 521-524.
- [3] G.M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. **12** (1988), no. 1, 1203-1219.
- [4] P. TOLKSDORF, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.