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Abstract

The paper studies and compare generalized solutions to discontinuous differential equations. This way,
are studied and compared the Euler, Filippov, Hermes, Krasovskii, and Sentis generalized solutions to
discontinuous differential equations. In particular, are studied relations between Euler and Hermes
solutions. In addition, it is proved that Hermes solutions satisfy some properties that are analogous to
the properties satisfied by Euler solutions.

Keywords

Differential inclusions, Discontinuous differential equations, Generalized solutions.

1 Introduction

In this paper are studied ordinary differential equation with a discontinuous right
hand side. Such that differential equations are named discontinuous differential equa-
tions. Here both the autonomous ordinary differential equations as well as nonau-
tonomous ordinary differential equations will be studied. This way, are studied gener-
alized solutions to discontinuous differential equations.

The study of discontinuous differential equations can be found, for example, in
[3, 4, 5, 6, 7, 8, 10, 11, 13, 14]. In particular, Euler solutions were considered in [3, 4, 6, 7,
8, 14] while Hermes solutions were treated in [3, 8, 10, 14]. On the other hand, Filippov
solutions were studied by [3, 5, 6, 8, 10, 13, 14] while Krasovskii solutions were studied
by [3, 6, 8, 10, 14]. Finally, Sentis solutions were named by [3] and introduced by [13].
Sentis solutions were also considered by [4, 5, 11].

The present paper studies generalized solutions for the initial value problems

ẋ(t) = f(t, x(t)), x(a) = x0 (1)
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and
ẋ(t) = g(x(t)), x(a) = x0 (2)

where f : [a, b]× Rn → Rn and g : Rn → Rn. Thus, are studied properties of the Euler
and Hermes solutions to Eq. (1). On the other hand, the study of Filippov, Krasovskii
and Sentis solutions are related to Eq. (2). If f is a continuous function, then in [7] it is
proved that any Euler solution x to Eq. (1) is continuously differentiable on (a, b) and
satisfies ẋ(t) = f(t, x(t)) ∀t ∈ (a, b). This property for Euler solutions is stated in part
(c) of the theorem [[7],1.7. Theorem]. An analogous result is proved here for Hermes
solutions. The theorem [[7],1.7. Theorem] deals with properties for Euler solutions.
Analogues to parts (a) and (b) of this theorem for Hermes solutions to Eq. (1) are also
obtained here.

Motivated by [4] by the study on relationships between generalized solutions to Eq.
(2), the present work also studies relationships between the Euler, Filippov, Hermes,
Krasovskii, and Sentis generalized solutions to Eq. (2). It is convenient to highlight the
novelty of study in present work involving relationships between the Euler, Hermes,
Krasovskii, and Sentis solutions to Eq. (2). In particular, it is proved that a Sentis
solution is a Hermes solution.

2 Preliminaries

In this section are considered concepts and results that will be used in the develop-
ment of the present work.

2.1 Lebesgue measure and integral

Here are reminded basic concepts of measure theory. A more complete approach
to Lebesgue measure and integral, can be found in [12].

Definition 2.1. A function f : [a, b] → Rn is said to be Lebesgue measurable if for all open
set V ⊂ Rn, the set

f−1(V ) = {t ∈ [a, b] : f(t) ∈ V }

is Lebesgue measurable.

Let I ⊂ R be an interval. It is said that a statement P holds almost everywhere
(a.e.) on I , if the set N given by

N = {t ∈ I : P does not hold at t}
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has Lebesgue measure zero.

The Banach space of Lebesgue integrable functions x : [a, b]→ Rn with the norm

‖x(·)‖L1 =

∫ b

a

|x(t)|dt

will be denoted by L1([a, b]).

2.2 Absolutely continuous functions

The definition of absolutely continuous function can be found in [2, 15].

Definition 2.2. A function x : [a, b] → Rn is called absolutely continuous if for any ε > 0,
there exists δ > 0 such that, for any countable collection of disjoint subintervals [ak, bk] of [a, b]
such that ∑

(bk − ak) < δ,

we have ∑
|x(bk)− x(ak)| < ε.

Below is a result considered in [2] for absolutely continuous functions.

Theorem 2.1. A continuous function is the integral of its derivative if and only if it is an
absolutely continuous function.

As discussed in [15], an absolutely continuous function x : [a, b] → Rn is differ-
entiable almost everywhere, and its derivative ẋ(·) is a Lebesgue integrable function.
Moreover, the Newton-Leibniz formula is true; that is,

x(t2)− x(t1) =
∫ t2

t1

ẋ(t)dt

for all t1, t2 ∈ [a, b], t1 < t2. Hence any absolutely continuous function x : [a, b]→ Rn

can be represented in the form

x(t) = x(a) +

∫ t

a

ẋ(s)ds.

We will refer to any absolutely continuous function x : [a, b] → Rn as an arc on
[a, b].

We will use the following result, known as Gronwall’s Lemma and discussed in
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[7].

Proposition 2.1. Let x be an arc on [a, b] which satisfies

‖ẋ(t)‖ ≤ γ‖x(t)‖+ c(t) a.e., t ∈ [a, b],

where γ is a nonnegative constant and where c(·) ∈ L1([a, b]) is a nonnegative function. Then,
for all t ∈ [a, b], we have

‖x(t)− x(a)‖ ≤ (eγ(t−a) − 1)‖x(a)‖+
∫ t

a

eγ(t−s)c(s)ds.

If the function c is constant and γ > 0, this becomes

‖x(t)− x(a)‖ ≤ (eγ(t−a) − 1)(‖x(a)‖+ c/γ).

2.3 First fundamental theorem of calculus

We will use the first fundamental theorem of calculus, as stated below.

Theorem 2.2 ([1]). Let f be a function that is integrable on [a, x] for each x in [a, b]. Let c be
such that a ≤ c ≤ b and define a new function A as follows:

A(x) =

∫ x

c

f(t)dt if a ≤ x ≤ b.

Then the derivativeA′(x) exists at each point x in the open interval (a, b) where f is continuous,
and for such x we have

A′(x) = f(x).

3 Generalized solutions to Eqs. (1) and (2)

In this section, we find the main results of the present study. The contributions of
the paper to the theory of differential equations with discontinuous right-hand sides
are stated in Theorem 3.2, Proposition 3.2 and Lemma 3.1.
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3.1 Euler and Hermes solutions to Eq. (1)

The following are the Euler andHermes solutions to (1). Initially the Euler solutions
are defined as in [7]. Thus, let

π = {t0, t1, ..., tN−1, tN}

be a partition of [a, b], where t0 = a and tN = b. The diameter of the partition π is given
by

µπ := max{ti − ti−1 : 1 ≤ i ≤ N}.

Definition 3.1. We define the Euler polygonal arc for Eq. (1) and corresponding to the partition
π, by the arc xπ : [a, b]→ Rn given by:

xπ(t0) = x0, xπ(t) = x0 + (t− t0)f(t0, x0), t ∈ [t0, t1]

xπ(t1) = x1, xπ(t) = x1 + (t− t1)f(t1, x1), t ∈ [t1, t2]

and by induction

xπ(ti) = xi, xπ(t) = xi + (t− ti)f(ti, xi), t ∈ [ti, ti+1]

when i ∈ {0, 1, . . . , N − 1}.

Definition 3.2. We say that the arc x : [a, b] → Rn is an Euler solution for (1), if x is the
uniform limit of Euler polygonal arcs xπj , corresponding to some sequence πj such that µπj → 0.

Below we state the theorem [[7],1.7. Theorem].

Theorem 3.1 ([7]). Suppose that for positive constants γ and c and for all (t, x) ∈ [a, b]×Rn,
we have the linear growth condition

‖f(t, x)‖ ≤ γ‖x‖+ c,

where f is otherwise arbitrary. Then:

(a) At least one Euler solution x to the initial-value problem (1) exists on [a, b], and any Euler
solution is Lipschitz.

(b) Any Euler arc x for f on [a, b] satisfies

‖x(t)− x(a)‖ ≤ (t− a)eγ(t−a)(c+ γ‖x(a)‖), a ≤ t ≤ b.
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(c) If f is continuous, then any Euler arc x for f on [a, b] is continuously differentiable on
(a, b) and satisfies ẋ(t) = f(t, x(t)) ∀t ∈ (a, b).

Examples of Euler solutions are given below. Thus, let f : [0, 1] × R → R be the
function given by

f(t, x) =

{
1, x = 0

0, x 6= 0

and let x0 = 0. Given a partition πj = {t(j)0 , t
(j)
1 , ..., t

(j)
Nj
} of [0, 1], the Euler polygonal arc

xπj is given by

xπj(t) = t, t ∈ [t
(j)
0 , t

(j)
1 ]

xπj(t) = t
(j)
1 , t ∈ [t

(j)
i , t

(j)
i+1]

when i ∈ {1, ..., Nj − 1}. Since |xπj(t)| ≤ |t
(j)
1 | for each t ∈ [0, 1], and since t(j)1 → 0

whenever j →∞, then x(t) = 0 is the only Euler solution for (1). Now consider the
function f : [0, 1]× R→ R given by

f(t, x) =

{
0, x = 0

1, x 6= 0

and let x0 = 0. For every partition π of [0, 1] we have xπ = 0. Therefore, x(t) = 0 is the
only Euler solution for (1). Suppose now that x0 = 1. In this case, for every partition π
of [0, 1] it follows that xπ = 1 + t. Thus, x(t) = 1 + t is the only Euler solution for (1).

To define Hermes solutions we must first define Carathéodory solutions.

Definition 3.3. An arc x : [a, b] → Rn is a Carathéodory solution to (1) if, and only if, x
satisfies the differential equation given in Eq. (1) for a.e. t ∈ [a, b] and x(a) = x0.

Below we define Hermes solutions as [8].

Definition 3.4. Let x : [a, b]→ Rn be an arc. We say that x is a Hermes solution to Eq. (1)
if, and only if, there exist functions Lebesgue measurable pj : [a, b]→ Rn and Carathéodory
solutions xj to the initial value problem

ẏ(t) = f(t, y(t) + pj(t)), y(a) = x0 (3)

such that pj ⇒ 0 and xj ⇒ x.

The notations pj ⇒ 0 and xj ⇒ xmeans uniform convergence. We also note that
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an Euler solution is a Hermes solution, as stated below.

Proposition 3.1. Suppose that there are positive constants γ and c such that

‖f(t, x)‖ ≤ γ‖x‖+ c (4)

for every (t, x) ∈ [a, b]× Rn. Then every Euler solution of Eq. (1) is a Hermes solution.

The proof of the above result can be found in [14]. An example of a Hermes
solution is considered below. For this, consider again the function f : [0, 1]× R→ R
given by

f(t, x) =

{
0, x = 0

1, x 6= 0

and let x0 = 0. If pj(t) = 1/j and xj(t) = t, then xj is a Carathéodory solution to Eq.
(3) for every j ∈ N \ {0}. Therefore x(t) = t is a Hermes solution to Eq. (1). Since in
this case x(t) = 0 is the only Euler solution to Eq. (1), we conclude that in general a
Hermes solution is not an Euler solution.

In the theorem below we get properties for Hermes solutions that make an analogy
with the theorem [[7],1.7. Theorem].

Theorem 3.2. Suppose f is Lebesgue measurable in t for each x fixed. Assume also that f
satisfies the linear growth condition given in Eq. (4). Then:

(a) There exists at least one Hermes solution y to Eq. (1). In addition, any Hermes solution
is Lipschitz continuous.

(b) There exists a positive constantK such that every Hermes solution satisfies

‖y(t)− y(a)‖ ≤ (eγ(t−a) − 1)(‖y(a)‖+K/γ)

for all t ∈ [a, b].

(c) If f is a continuous function, then any Hermes solution y to Eq. (1) is continuously
differentiable on (a, b) and satisfies ẏ(t) = f(t, y(t)) ∀t ∈ (a, b).

Proof. The existence of at least one Hermes solution y is established in the theorem [[8],
Theorem 6]. If y is a Hermes solution to Eq. (1), then there exist Lebesgue measurable
functions pj : [a, b] → Rn and Carathéodory solutions yj of Eq. (3) such that pj ⇒ 0
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and yj ⇒ y. Then there exist N ∈ N and c1 > 0 satisfying ‖pj(t)‖ ≤ 1 and ‖yj(t)‖ ≤ c1

for all t ∈ [a, b], whenever j ≥ N . Thus, if L = γc1 + γ + c, then

‖ẏj(t)‖ = ‖f(t, yj(t) + pj(t))‖ ≤ γ‖yj(t) + pj(t)‖+ c

≤ γ‖yj(t)‖+ γ‖pj(t)‖+ c ≤ γc1 + γ + c

= L a.e., t ∈ [a, b]

hence yj is Lipschitz continuous with Lipschitz constant L. Thus, y is Lipschitz contin-
uous with Lipschitz constant L. This proves item (a).

Let y and yj be as in the proof of item (a). We saw that

‖ẏj(t)‖ ≤ γ‖yj(t)‖+ γ + c a.e., t ∈ [a, b]

for every j ≥ N . If K = γ + c, we have

‖ẏj(t)‖ ≤ γ‖yj(t)‖+K a.e., t ∈ [a, b]

and from Proposition 2.1 it follows that

‖yj(t)− yj(a)‖ ≤ (eγ(t−a) − 1)(‖y(a)‖+K/γ)

for all t ∈ [a, b]. Therefore

‖y(t)− y(a)‖ ≤ (eγ(t−a) − 1)(‖y(a)‖+K/γ)

for all t ∈ [a, b], proving item (b).

Again, let y and yj be as in the proof of item (a). Since a continuous function
in Rn+1 is uniformly continuous in compact sets, for every ε > 0 there exists δ > 0

satisfying
‖f(t, z)− f(t, w)‖ < ε

whenever ‖z‖ ≤ c1 + 1, ‖w‖ ≤ c1 + 1 and ‖z − w‖ < δ. Hence, there exists J ∈ N such
that

‖f(t, yj(t) + pj(t))− f(t, yj(t))‖ < ε
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for all j ≥ J . In this way, if j ≥ J we have

‖yj(t)− yj(a)−
∫ t

a

f(τ, yj(τ))dτ‖

= ‖
∫ t

a

{ẏj(τ)− f(τ, yj(τ))}dτ‖

= ‖
∫ t

a

{f(τ, yj(τ) + pj(τ))− f(τ, yj(τ))}dτ‖

≤ ε(t− a) ≤ ε(b− a).

Taking j →∞we may conclude that

‖y(t)− y(a)−
∫ t

a

f(τ, y(τ))dτ‖ ≤ ε(b− a).

Since ε is arbitrary, we get

y(t) = y(a) +

∫ t

a

f(τ, y(τ))dτ

and from Theorem 2.2 y is continuously differentiable on (a, b) and satisfies ẏ(t) =

f(t, y(t)) for all t ∈ (a, b). Thus, we conclude the proof of item (c).

3.2 Filippov and Krasovskii solutions to Eq. (2)

In this work, it is assumed that the vector field g : Rn → Rn is Lebesgue measurable
and locally bounded to define the Filippov and Krasovskii solutions to Eq. (2).

The notions of Filippov and Krasovskii solutions to Eq. (2) consists of replacing
the differential equation given in Eq. (2) by a suitable differential inclusion:

ẋ(t) ∈ G(x(t)). (5)

By ordinary solution of Eq. (5) we mean any arc x : [a, b]→ Rn satisfiyng ẋ(t) ∈
G(x(t)) a.e. on the interval [a, b]. Filippov solutions to Eq. (2) are the ordinary solutions
of Eq. (5) obeying x(a) = x0, where

G(x) = GF (x) =
⋂
δ>0

⋂
µ(N)=0

co{g(B(x, δ) \N)}
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while Krasovskii solutions of Eq. (2) are the ordinary solutions of Eq. (5) obeying
x(a) = x0, where

G(x) = GK(x) =
⋂
δ>0

co{g(B(x, δ))}

where µ is the Lebesgue measure of Rn, co denotes the closure of the convex hull, and
B(x, r) is the open ball of radius r centered at x. Since GF (x) ⊂ GK(x), every Filippov
solution is a Krasovskii solution. The set of Filippov (respectively, Krasovskii) solutions
of Eq. (2) will be denoted by F (respectively, K). Furthermore, we denote the sets of
Euler, Hermes, and Carathéodory solutions to Eq. (2) respectively by E ,H, and C.

Since g is measurable and locally bounded, then the set valued mapGF (x) is upper
semicontinuous, locally bounded, compact and convex valued. The same holds true
for GK(x). It follows that the Eq. (2) has a Filippov solution (and hence a Krasowskii
solution) on some interval [a, c] ([9]).

It is well known that GK(x) = GF (x) = g(x)whenever the function g is continuous
at x. Then F = K = C when the function g is continuous.

As we can see in corollary [[10],Corollary 5.6.], K = H.

Now consider the differential equation

ẋ(t) =
3

2
x1/3, x(0) = 0 (6)

on the interval [0, 1]. The Eq. (6) has three distinct Carathéodory solutions: x(t) = t3/2,
x(t) = −t3/2 and x(t) = 0. However the only Euler solution to Eq. (6) is x(t) = 0.
Since g(x) = 3

2
x1/3 is a continuous function, we may conclude that F = K = H = C.

Therefore, even in the case where g is a continuous function, in general a Hermes
solution is not an Euler solution. Thus, we get the following proposition.

Proposition 3.2. Suppose that the function g : Rn → Rn is continuous. Then E ⊂ H = K =

F = C.

3.3 Sentis solutions to Eq. (2)

Sentis solutions to Eq. (2) will be defined as g-solutions of Eq. (5). Thus, g-
solutions are defined below. He we also assumed that the vector field g : Rn → Rn is
Lebesgue measurable and locally bounded.

According to [13] we replace the Eq. (2) by a differential inclusion given in Eq. (5)
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where
G(x) = GS(x) =

⋂
δ>0

⋂
µ(N)=0

{g(B(x, δ) \N)}. (7)

The set valued mapGS(x) is upper semicontinuous, locally bounded and compact (but
in general not convex) valued.

Let x0 be a fixed point of Rn. Givenm ∈ N, consider a partition of [a, b]

a = tm,0 < tm,1 < · · · < tm,km−1 < tm,km = b

where km is some positive integer, and let

lm = max{tm,i+1 − tm,i, i = 0, . . . , km − 1}.

Then, for each i = 0, . . . , km−1 take εm,i ∈ Rn and construct a piecewise linear function
ψm(t) on the interval [a, b] satisfying ψm(tm,0) = x0, and

ψm(tm,i+1) = ψm(tm,i) + vm,i(tm,i+1 − tm,i) + εm,i

where vm,i is an arbitrary element in G(ψm(tm,i)). The function ψm(t)will be called a
polygonal approximation.

Definition 3.5. A function ϕ : [a, b]→ Rn is a g-solution of Eq. (5) if for each σ > 0 there
exists an integerm and a polygonal approximation obeying

‖ϕ(t)− ψm(t)‖ < σ ∀t ∈ [a, b]

0 < lm < σ and 0 ≤
km−1∑
i=0

‖εm,i‖ < σ.

By construction, ϕ(a) = x0. It is proved in [13] that ifG(x) is upper semicontinuous,
compact valued and locally bounded, then for each x0 there exist b > a and a g-solution
ϕ : [a, b]→ Rn with ϕ(a) = x0. It is also proved in [13] that ordinary solutions of Eq.
(5), when they exists, are g-solutions. Other properties concerning g-solutions can be
founded in [3] and [13].

We say that a function ϕ(t) is a Sentis solution of Eq. (2) if it is a g-solution of Eq.
(5) with G(x) = GS(x). The set of Sentis solutions of Eq. (2) will be denoted by S.

Proposition 3.3 ([13]). Suppose that the function g : Rn → Rn is Lebesgue measurable and
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locally bounded. Then every Sentis solution of Eq. (2) is a Filippov solution.

As a consequence from the relationships K = H and F ⊂ K, we have the following
lemma.

Lemma 3.1. Suppose that the function g : Rn → Rn is Lebesgue measurable and locally
bounded. Then S ⊂ H.

However, we note that in general a Hermes solution is not a Sentis solution. For
example, consider the function f : R → R given by f(x) = 1 if x > 0, f(x) = −1 if
x < 0 and f(x) = 0 if x = 0. Suppose that a = 0, b = 1 and x0 = 0. Then S = {t,−t},
what can be witnessed by [13]. On the other hand, x(t) = 0 is a Hermes solution.

4 Conclusions

The present work presents a study involving comparisons between generalized
solutions for discontinuous differential equations. The main results on comparisons
of generalized solutions are stated in Proposition 3.1, Proposition 3.2 and Lemma
3.1. Furthermore, in Theorem 3.2 it is proved that Hermes solutions also satisfy some
properties which are analogous to the properties satisfied by the Euler solutions.
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