Aritmética no estudo de retas e cônicas

Thais Ester Gonçalves

thais.ester@aluno.ufop.edu.br

Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil

Geraldo César Gonçalves Ferreira

geraldocesar@ufop.edu.br

Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil

Resumo

Neste trabalho aritmética e geometria são vistas em um único foco, através dos resultados obtidos por Fermat, Diofanto, Euclides, entre outros matemáticos. Nesta ligação entre a Aritmética e a Geometria, buscaremos soluções inteiras ou racionais de equações polinomiais de duas variáveis, de grau um ou dois, com coeficientes inteiros, o que neste caso é equivalente a encontrarmos pontos de coordenadas inteiras ou racionais em retas e cônicas. Como aplicação exibiremos todos os números inteiros que podem ser escritos como soma de dois quadrados e demonstraremos o último Teorema de Fermat para o caso em que n=3.

Palavras-chave

Aritmética, Geometria, Fermat.

1 Introdução

A aritmética e a geometria se fazem presentes em todo momento do nosso cotidiano e são utilizadas desde os primórdios, sendo consideradas as áreas mais antigas da matemática. Para os pitagóricos, segundo Pinedo e Pinedo apud [11], um ponto era chamado de um, uma reta de dois, uma superfície de três e um sólido, de quatro. Assim, "os pontos geravam retas, que geravam superfícies, que geravam sólidos, que formavam o universo". Neste trabalho, buscamos estudar a aritmética e a geometria em um único foco através dos resultados obtidos por Fermat, Diofanto, Euclides, entre outros matemáticos. Iniciamos estudando existência de pontos de $\mathbb{Z} \times \mathbb{Z}$ em retas no plano cartesiano $\mathbb{R} \times \mathbb{R}$, o algoritmo de Euclides e equações diofantinas lineares. Na segunda seção, introduzimos a aritmética em cônicas estudando, basicamente, o Método das Secantes e Tangentes de Fermat, cuja bibliografia principal é dada por [7]. Por fim, na terceira seção, buscamos números inteiros que podem ser escritos como soma de dois quadrados, introduzindo o descenso infinito de Fermat, enunciando e demonstrando o último teorema de Fermat no caso em que n=3.

©2021 by Periódicos UFOP

Revista de Matemática de Ouro Preto v.2 pp:140-180 2021 : 2237-8103

2 Aritmética em retas

A aritmética juntamente com a geometria são os ramos mais antigos da matemática. A aritmética em retas, também conhecida como aritmética linear, estuda equações e inequações com coeficientes inteiros em busca de soluções inteiras. Nesta seção, buscaremos soluções para equações do tipo bx + cy = a, que são denominadas diofantinas (homenagem ao matemático Diofanto). Essas equações serão vistas como retas no plano, sendo cada solução representada por um ponto. Para essa seção, usaremos [7] como principal referência.

2.1 Pontos inteiros em retas e o algoritmo de Euclides

Iniciaremos obtendo uma condição necessária e suficiente para a existência de pontos de \mathbb{Z}^2 em uma reta no plano \mathbb{R}^2 .

Proposição 2.1. Seja $l = \{(x,y) \in \mathbb{R}^2 | bx + cy = a \}$ uma reta com coeficientes inteiros a,b e c. Suponha que a reta possua um ponto inteiro $(x_0,y_0) \in \mathbb{Z}^2$. Seja $w = (-\gamma,\beta)$ o vetor diretor inteiro e irredutível da reta l, então todos os pontos inteiros da reta são $(x_k,y_k) = (x_0 + k\gamma, y_0 - k\beta), k \in \mathbb{Z}$.

Demonstração. Primeiramente, demonstraremos que estes pontos são pontos inteiros da reta, substituindo-os na equação de l. Sabemos que, a menos de sinal, $w=\frac{1}{d}v$, sendo v=(c,-b) e $d=\mathrm{mdc}(b,c)$ (w é o vetor diretor irredutível da reta l). Então:

$$bx + cy = bx_k + cy_k$$

$$= b(x_0 + k\gamma) + c(y_0 - k\beta)$$

$$= bx_0 + bk\gamma + cy_0 - ck\beta$$

$$= bx_0 + bk\left(\frac{-c}{d}\right) + cy_0 - ck\left(\frac{-b}{d}\right)$$

$$= bx_0 + cy_0$$

Como $(x_0, y_0) \in l$, temos que $bx_0 + cy_0 = a$. Portanto, está demonstrado que estes pontos são pontos inteiros da reta.

Agora, vamos demonstrar que esses pontos são todos os pontos inteiros da reta.

Suponhamos que exista um outro ponto inteiro $Q=(x',y')\in l$. Digamos que este ponto Q está entre dois pontos inteiros P_k e P_{k+1} pertencentes à l. Estes pontos são colineares e originam dois triângulos retângulos semelhantes que possuem hipotenusa sobre l e catetos nas direções horizontal e vertical, como na figura 1:

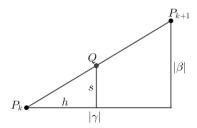


Figura 1: Triângulos retângulos semelhantes

Sejam h e s medidas dos catetos do triângulo menor, horizontal e vertical, respectivamente, e $|\gamma|$ e $|\beta|$ medidas dos catetos do triângulo maior, horizontal e vertical respectivamente. Dessa forma, temos que $h < |\gamma|$ e $s < |\beta|$. Além disso, pela proporcionalidade, temos que

$$\frac{h}{s} = \frac{|\gamma|}{|\beta|}$$

e isto é um absurdo, pois $h,s,|\gamma|$ e $|\beta|$ são números inteiros (pois os pontos P_k,P_{k+1} e Q são inteiros) e, por hipótese, $\mathrm{mdc}(\gamma,\beta)=1$, ou seja, a fração $\frac{|\gamma|}{|\beta|}$ é irredutível.

Portanto, todos os pontos inteiros da reta são $(x_k, y_k) = (x_0 + k\gamma, y_0 - k\beta)$, $k \in \mathbb{Z}$.

Dados dois números inteiros a e b, como usual, usaremos a notação a|b para dizermos que b é divisível por a. Estudaremos o algoritmo de Euclides para o cálculo do mdc de dois números inteiros.

Lema 2.1. Sejam b, c e d números inteiros. Se d|b e d|c, então para todo número inteiro k temos que d|(b-kc). Além disso, mdc(b,c) = mdc(c,b-kc).

Demonstração. Sejam b, c e d números inteiros tais que d|b e d|c. Assim, podemos

escrever $b = dq_1$ e $c = dq_2$ com $q_1, q_2 \in \mathbb{Z}$. A diferença desses números é:

$$b-c = dq_1 - dq_2 = d(q_1 - q_2), \quad q_1, q_2 \in \mathbb{Z}$$

Note que se d|c então d|kc para todo $k \in \mathbb{Z}$:

$$kc = kdq_2, \quad kdq_2 \in \mathbb{Z}$$

Daí, como d|b, então d divide a diferença (b-kc).

Agora, se d|c e d|(b-kc), então d divide a soma (b-kc)+(kc)=b, ou seja, d|b e d|c. Concluímos, então, que mdc(b,c)=mdc(c,b-kc).

Teorema 2.1 (Algoritmo de Euclides). Sejam b > c > 0 dois números inteiros. Se c|b então (b,c) = c, caso contrário:

$$mdc(b,c) = mdc(c,r_1) = mdc(r_1,r_2) = \dots = mdc(r_{n-1},r_n) = mdc(r_n,0) = r_n,$$

onde

$$b = cq_1 + r_1, \quad 0 \le r_1 < c$$

$$c = r_1q_2 + r_2, \quad 0 \le r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \quad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 \le r_n < r_{n-1}$$

com r_n sendo o último resto não nulo e $q_i \in \mathbb{Z}$ para todo $i \in \mathbb{N}$.

Demonstração. Consideremos b > c > 0. Se c|b, então c é o maior divisor natural de b e c, consequentemente $\mathrm{mdc}(b,c) = c$.

Suponhamos então que $c \nmid b$, pela divisão euclidiana de b por c sabemos que existem um quociente $q_1 \in \mathbb{Z}$ e um resto $r_1 \in \mathbb{N}$ tais que:

$$b = cq_1 + r_1 \Rightarrow r_1 = b - cq_1, \ 0 \le r_1 < c.$$

Assim, temos duas possibilidades:

1) $r_1|c$, e, neste caso, pelo Lema 2.1,

$$r_1 = \mathsf{mdc}(c, r_1) = \mathsf{mdc}(c, b - cq_1) = \mathsf{mdc}(c, b)$$

e termina o algoritmo.

2) $r_1 \nmid c$, e, neste caso, podemos efetuar a divisão de c por r_1 , obtendo

$$c = q_2 r_1 + r_2 \Rightarrow r_2 = c - q_2 r_1, \ 0 < r_2 < r_1.$$

Novamente, temos duas possibilidades:

1) $r_2|r_1$, e, neste caso, pelo Lema 2.1,

$$r_2 = \mathsf{mdc}(r_1, r_2) = \mathsf{mdc}(r_1, c - q_2 r_1) = \mathsf{mdc}(r_1, c) = \mathsf{mdc}(b - cq_1, c) = \mathsf{mdc}(b, c)$$

e termina o algoritmo.

2) $r_2 \nmid r_1$, e, neste caso, podemos efetuar a divisão de r_1 por r_2 , obtendo

$$r_1 = r_2 q_3 + r_3 \Rightarrow r_3 = r_1 - r_2 q_3$$
, $0 < r_3 < r_2$.

Esse procedimento não pode continuar indefinidamente, pois teríamos uma sequência de números naturais $c>r_1>r_2>\dots$ que não possui menor elemento, o que não é possível pelo Princípio da Boa Ordenação.

Portanto, para algum
$$n \in \mathbb{N}$$
, temos que $r_n | r_{n-1}$, o que implica que $mdc(b, c) = r_n$.

2.2 Algoritmo de Euclides de maneira prática:

Uma maneira prática para o cálculo do $\operatorname{mdc}(b,c)$ utilizando o Teorema 2.1 é feita em [8]. O método consiste em dividir b por c encontrando um quociente q_1 e um resto r_1 . Em seguida organizamos estes números em um diagrama:

$$egin{array}{c|c} q_1 \\ \hline b & c \\ \hline & r_1 \\ \hline \end{array}$$

Feito isto, repetimos r_1 ao lado de c e dividimos c por r_1 resultando em um quociente q_2 e um resto r_2 . Novamente, escrevemos r_2 ao lado de r_1 e dividimos r_1 por r_2 obtendo um quociente q_3 e um resto r_3 . Repetimos este processo enquanto for possível e organizamos todos os números no diagrama, como segue:

	$oxed{q_1}$	$igg q_2$	 q_n	$oxed{q_{n+1}}$
b	c	$oldsymbol{r_1}$	 r_{n-1}	$r_n = mdc(b,c)$
	r_1	r_2	 r_n	

Lema 2.2 (Algoritmo Estendido de Euclides - Lema de Bèzout). Sejam b e c números inteiros, b > c > 0, e seja d = mdc(b, c). Então existem números inteiros x e y tais que bx + cy = d. Além disso, os inteiros x e y podem ser efetivamente calculados a partir de um algoritmo finito.

Demonstração. Como no Teorema 2.1 considere $r_1, r_2 \cdots, r_n$ dados por

$$b = cq_1 + r_1, \quad 0 \le r_1 < b$$

$$c = r_1q_2 + r_2, \quad 0 \le r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \quad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 \le r_n < r_{n-1}$$

onde $r_n=d$ é o o último resto não nulo. A última igualdade pode ser reescrita como:

$$r_n = r_{n-2} - r_{n-1}q_n \tag{1}$$

Além disso, ao dividirmos r_{n-3} por r_{n-2} , obtemos um quociente q_{n-1} e um resto r_{n-1} , podendo também rescrever da seguinte forma:

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} \Rightarrow r_{n-1} = r_{n-3} - r_{n-2}q_{n-1} \tag{2}$$

Substituindo 2 em 1, temos:

$$r_n = r_{n-2} - (r_{n-3} - r_{n-2}q_{n-1})q_n = (q_{n-1}q_n + 1)r_{n-2} - r_{n-3}q_n$$
 Revista de Matemática de Ouro Preto 2021 145

Nomeamos $x_{n-2}=q_{n-1}q_n+1$ e $y_{n-2}=-q_n$. Temos que $x_{n-2},y_{n-2}\in\mathbb{Z}$ e

$$r_n = x_{n-2}r_{n-2} + y_{n-2}r_{n-3}. (3)$$

Repetindo este processo um número finito de vezes, veremos que existem $x_1,y_1\in\mathbb{Z}$ tais que

$$d = r_n = x_1 r_2 + y_1 r_1 \tag{4}$$

Contudo $r_1 = b - cq_1$ e $r_2 = c - r_1q_2$. Substituindo r_1 e r_2 em 4:

$$r_n = x_1(c - r_1 q_2) + y_1(b - c q_1) = x_1(c - (b - c q_1)q_2) + y_1(b - c q_1) = b(y_1 - x_1 q_2) + c(x_1 + x_1 q_1 q_2 - y_1 q_1 q_1 - y_1 q_1) + c(x_1 + x_1 q_1 q_1 - y_1 q_1 - y_1 q_1 -$$

Denotando $x=(y_1-x_1q_2)$ e $y=(x_1+x_1q_1q_2-y_1q_1)$, temos que $x,y\in\mathbb{Z}$ e

$$bx + cy = r_n = d.$$

2.3 Equações diofantinas lineares de duas variáveis

Uma equação diofantina linear de duas variáveis é uma equação do tipo bx+cy=a tal que a,b e $c\in\mathbb{Z}$ com b,c não nulos. Esta equação recebe este nome em homenagem ao matemático Diofanto e, para estudá-las, usaremos [4] e [10] como referências.

Vejamos, como motivação, dois exemplos de problemas que envolvem a equação diofantina:

Exemplo 2.1. Uma costureira possui 63 metros de tecido e deseja cortá-lo em tiras de 2 ou 4 metros de forma que não sobre nenhum retalho. De quantas maneiras a costureira consegue cortar este tecido?

Resolver este problema é o mesmo que resolver a equação diofantina 2x+4y=63. Neste exemplo é fácil perceber que a equação não possui solução inteira, uma vez que temos soma de pares resultando em um número ímpar. Mas, no geral, quando uma equação desse tipo terá soluções?

Exemplo 2.2. Uma pessoa possui R\$ 60,00 deseja comprar maçãs e laranjas,

sendo que cada maçã custa R\$ 3,00 e cada laranja custa R\$ 5,00. Quantas dessas frutas ela pode comprar gastando todo o dinheiro?

Resolver este problema é buscar soluções inteiras para a equação 3x + 5y = 60. Uma solução para este problema é x = 10 e y = 6, ou seja, comprar 10 maçãs e 6 laranjas. Mas há outras soluções? Como encontrá-las?

Ao estudar uma equação diofantina linear de duas variáveis, buscamos saber se ela possui soluções inteiras e, em caso positivo, encontrar todas as soluções.

Teorema 2.2. Sejam $a, b, c \in \mathbb{Z}$ e d = mdc(b, c) com b, c não nulos. A equação diofantina bx + cy = a possui solução inteira se, e somente se, d|a, e neste caso todas as soluções são da forma $x = x_0 - \frac{c}{d}k$ e $y = y_0 + \frac{b}{d}k$, com $k \in \mathbb{Z}$, sendo (x_0, y_0) uma solução particular.

Demonstração. Sejam x_0 e y_0 soluções da equação, ou seja,

$$bx_0 + cy_0 = a$$

Seja d = mdc(b, c). Como d|b e d|c, podemos escrever $b = q_1d$ e $c = q_2d$, com $q_1, q_2 \in \mathbb{Z}$. Substituindo b e c na equação acima, temos:

$$q_1 dx_0 + q_2 dy_0 = a \Rightarrow d(q_1 x_0 + q_2 y_0) = a$$

com $q_1x_0 + q_2y_0 \in \mathbb{Z}$ donde d = mdc(b, c)|a.

Reciprocamente seja $d=\operatorname{mdc}(b,c)$ e $k\in\mathbb{Z}$ tal que a=kd. Pelo Lema 2.2, existem números inteiros x e y tais que

$$d = bx + cy$$
.

Multipliquemos essa equação por k:

$$dk = bxk + cyk$$
.

Logo a=b(xk)+c(yk) e (xk,yk) é uma solução da equação. A afirmação que Revista de Matemática de Ouro Preto 2021 147

todas as soluções são da forma $x = x_0 - \frac{c}{d}k$ e $y = y_0 + \frac{b}{d}k$, sendo (x_0, y_0) uma solução particular segue da Proposição 2.1.

Corolário 2.1. Se b e c são coprimos, ou seja, mdc(b,c) = 1, então a equação bx + cy = a possui soluções inteiras, para todo número inteiro a.

Demonstração. Pelo Lema 2.2 existem inteiros x_0 e y_0 tais que:

$$bx_0 + cy_0 = 1$$

Consequentemente $\tilde{x_0} = ax_0$ e $\tilde{y_0} = ay_0$ satisfazem a equação bx + cy = a.

Observação 2.1. Se equação bx + cy = 1 possui soluções inteiras, então mdc(b,c) = 1. Com efeito, seja d = mdc(b,c). Como d|b, d|c então, d|(bx + cy). Ainda como bx + cy = 1, segue que d|1 e como d > 0 temos que d = 1.

Teorema 2.3. Seja (x_0, y_0) uma solução particular da equação bx + cy = a com mdc(b, c) = 1. Então essa equação possui infinitas soluções e todas são da forma $(x_0 + ck, y_0 - bk), k \in \mathbb{Z}$.

Demonstração. Segue diretamente do Teorema 2.2.

Exemplo 2.3. Encontre o conjunto solução da equação 162x + 48y = 6.

Inicialmente, vamos encontrar o mdc(162,48) para verificarmos se esta equação possui solução inteira. Utilizando o algoritmo de Euclides, temos que mdc(162,48) = 6 e como 6|6, a equação possui solução.

	3	2	1	2	
162	48	18	12	6	
	18	12	6		

Observe que não é trivial encontrar uma solução particular para esta equação.

No entanto, do algoritmo de Euclides decorre que

$$162 = 3.48 + 18 \Rightarrow 18 = 162 - 3.48$$

 $48 = 2.18 + 12 \Rightarrow 12 = 48 - 2.18$

$$18 = 1.12 + 6 \Rightarrow 6 = 18 - 1.12$$

Com isso, podemos escrever:

$$6 = 18 - 1.12$$

$$6 = 18 - 1.(48 - 2.18)$$

$$6 = 3.18 - 1.48$$

$$6 = 3.(162 - 3.48) - 1.48$$

$$6 = 3.162 - 10.48$$

$$6 = 162.3 + 48.(-10)$$

Assim, temos que x=3 e y=-10 é uma solução para a equação 162x+48y=6.

Conhecendo uma solução podemos encontrar todas as outras a partir dela. Para isto, vamos dividir toda a equação pelo mdc(162, 48). Assim, a equação fica da forma 27x + 8y = 1 com mdc(27, 8) = 1.

Logo, pelo Teorema 2.3, temos que o conjunto solução da equação 162x+48y=6 é

$$S = \{(3+8k, -10-27k) | k \in \mathbb{Z}\}$$

Observação 2.2. No exemplo 2.3 trabalhamos com a equação 162x + 48y = 6 com o intuito de utilizarmos o Algoritmo de Euclides de forma prática. No entanto, sabendo que mdc(162, 48) = 6, podemos dividir toda a equação por 6 e trabalhar com a equação 27x + 8y = 1, que é mais simples e requer menos trabalho, uma vez que efetuamos divisões com números menores.

3 Aritmética em cônicas

As cônicas são curvas algébricas planas definidas por um polinômio de grau 2. Nesta seção sobre a aritmética em cônicas, novamente usaremos [7] como prinicpal referência.

Vejamos as formas canônicas com coeficientes inteiros das cônicas:

- Parábolas: $\{(x,y) \in \mathbb{R}^2 | ax^2 + by = 0\}, a \neq 0, b \neq 0.$
- Hipérboles: $\{(x,y) \in \mathbb{R}^2 | ax^2 by^2 = c\}, a > 0, b > 0, c > 0.$
- Elipses: $\{(x,y) \in \mathbb{R}^2 | ax^2 + by^2 = c\}, a > 0, b > 0, c > 0.$

Neste artigo trabalharemos apenas com elipses e hipérboles, mas todos os resultados dessa seção valem também para a parábola.

Proposição 3.1. Sejam $C: ax^2 \pm by^2 = c \ e \ r: y = mx + n$ uma cônica e uma reta de coeficientes racionais. Se essa cônica C e essa reta r se interceptam em um ponto racional, o outro ponto de intercessão também será racional.

Demonstração. Sejam $ax^2 \pm by^2 = c$ e y = mx + n equações de uma cônica e uma reta, respectivamente. Para encontrar a interseção entre a reta e cônica, devemos resolver o sistema gerado por suas equações, substituindo a equação da reta na equação da cônica:

$$ax^{2} \pm by^{2} = c$$

 $ax^{2} \pm b(mx + n)^{2} = c$
 $(a \pm bm^{2})x^{2} \pm (2bmn)x \pm (n^{2}b) - c = 0.$

Observemos que o sistema se resume em uma equação do segundo grau de uma variável do tipo $Ax^2 + Bx + C = 0$. Além disso, se a reta e a cônica possuem coeficientes racionais, então $A, B, C \in \mathbb{Q}$, pois a soma, subtração e produto de racionais resulta em um racional.

As raízes da equação do segundo grau fornecem abcissas dos pontos de interseção. Sabemos, pelas relações de Girard, que o produto das raízes é $\frac{C}{A}$, que é um

número racional. Então se tivermos uma raiz racional, a outra também será.

3.1 Método das tangentes e das secantes de Fermat:

Sejam C uma cônica, $P_1 \in C$ um ponto e r uma reta que não passa por P_1 . Seja t a reta paralela a r passando por P_1 e $P_2 = C \cap t$ (sendo P_1 e P_2 não necessariamente distintos). Considere a função:

$$\lambda: C \setminus \{P_1, P_2\} \rightarrow r$$

$$Q \rightarrow \overline{P_1Q} \cap r = R(Q)$$

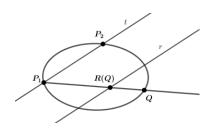


Figura 2: Representação geométrica da função λ .

 λ é uma função invertível com inversa

$$\lambda^{-1}: r \rightarrow C \setminus \{P_1, P_2\}$$

$$R \rightarrow \overline{P_1 R} \cap C = Q(R)$$

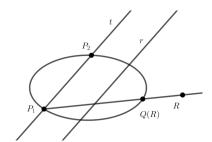


Figura 3: Inversa da função λ .

O Lema 3.1 é o análogo da Proposição 2.1 para pontos do conjunto \mathbb{Q}^2 em uma reta com coeficientes racionais.

Lema 3.1. Seja $l = \{(x, y) \in \mathbb{R}^2 | bx + cy = a \}$ uma reta com coeficientes racionais $a, b \in c$. Suponha que a reta possua um ponto racional $(x_0, y_0) \in \mathbb{Q}^2$. Os pontos $(x_k, y_k) = (x_0 + kc, y_0 - kb)$, são pontos da reta para todo $k \in \mathbb{Q}$.

Demonstração. Os pontos $(x_k, y_k) = (x_0 + kc, y_0 - kb)$ satisfazem a equação da reta para todo $k \in \mathbb{Q}$.

Teorema 3.1. Seja $C \subset \mathbb{R}^2$ uma cônica com coeficientes racionais. Se o conjunto $\mathbb{Q} \times \mathbb{Q} \cap C$ é não vazio, então ele possui uma infinidade de pontos.

Demonstração. Sejam C uma cônica de coeficientes racionais, $P \in \mathbb{Q} \times \mathbb{Q} \cap C$ e r uma reta com coeficientes racionais qualquer que não passa por P. Seja R pertencente à $\mathbb{Q}^2 \cap r$ e considere a reta determinada pelos pontos R e P. Seja Q o outro ponto de interseção da reta r com a cônica C. Note que pode ocorrer dos pontos P e Q serem os mesmos, se este for o caso tomamos outro ponto da reta em \mathbb{Q}^2 . Sabemos pela Proposição 3.1 que Q é um ponto racional. Dessa forma, relacionamos os pontos racionais de r com os pontos racionais de r. Agora, pelo Lema 3.1, r possui infinitos pontos racionais, donde, r0 terá infinitos outros pontos racionais, como queríamos mostrar.

Vejamos um exemplo do método das tangentes e das secantes de Fermat.

Exemplo 3.1. Seja $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Usamos o ponto P = (-1,0) e a reta $r = \{(0,t) \mid t \in \mathbb{R}\}$ para aplicar o Método de Fermat. Dados a cônica, o ponto P e a reta r, tracemos uma reta s paralela a r passando por P e tomemos um ponto Q = (x,y) qualquer, obtendo a função

$$\begin{array}{ccc} \lambda: C \setminus \{P\} & \to & r \\ Q & \to & \overline{PQ} \cap r \end{array}$$

Pela Figura 4, podemos observar dois triângulos semelhantes. Assim,

$$\frac{y}{x+1} = \frac{t}{1} \Rightarrow t = \frac{y}{x+1}$$

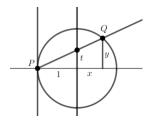


Figura 4: Representação geométrica da função λ .

Logo, a função λ é:

$$\lambda: C \setminus \{P\} \rightarrow l$$

$$(x,y) \rightarrow \left(0, \frac{y}{x+1}\right)$$

Agora, vamos encontrar a inversa dessa função, ou seja, λ^{-1} . Sabemos que $t=\dfrac{y}{x+1}\Rightarrow y=t(x+1)$. Então, substituindo y na equação da cônica, temos:

$$x^{2} + y^{2} = 1$$

$$x^{2} + (t(x+1))^{2} = 1$$

$$x^{2} + (tx+t)^{2} = 1$$

$$x^{2} + (tx)^{2} + 2t^{2}x + t^{2} = 1$$

$$(1+t^{2})x^{2} + 2t^{2}x + t^{2} - 1 = 0$$

Observe que a equação acima é uma equação do segundo grau na variável x e que x=-1 é uma raiz dessa equação (é a interseção, P, que já conhecemos). Pelas relações de Girard, sabemos que o produto das raízes x_1 e x_2 dessa equação é igual a:

$$x_1.x_2 = \frac{t^2 - 1}{1 + t^2}$$

Como $x_1 = -1$, segue que:

$$x_2 = \frac{1 - t^2}{1 + t^2}$$

Logo, temos a raiz $x_t = \frac{1-t^2}{1+t^2}$. Substituindo x_t em y_t :

$$y_t = t(x+1) = t\left(\frac{1-t^2}{1+t^2} + 1\right) = \frac{2t}{1+t^2}$$

Portanto,

$$\lambda^{-1}: r \to C \setminus \{P\}$$

$$Q \to \overline{PQ} \cap C$$

$$(0,t) \to \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

No próximo exemplo, além de mostrar a infinitude de pontos do Teorema 3.1, daremos uma descrição para esses pontos, como será visto mais adiante no Teorema 3.2.

Exemplo 3.2. Considere agora o círculo $C = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 2\}$. Um ponto racional neste círculo é (1,1). Considere a família de retas passando por esse ponto $r_t : y - 1 = t(x-1)$. Se $t \in \mathbb{Q}$, então cada uma dessas retas é secante ao círculo em um outro ponto P_t racional. Então, todos os outros pontos racionais desse círculo são:

$$\left(\frac{t^2 - 2t - 1}{t^2 + 1}, \frac{-t^2 - 2t + 1}{t^2 + 1}\right)$$

Sabemos que r_t : $y-1=t(x-1) \Rightarrow y=tx-t+1$. Então, vamos substituir y na equação do círculo:

$$x^{2} + y^{2} = 2$$

$$x^{2} + (tx - t + 1)^{2} = 2$$

$$x^{2} + t^{2}x^{2} - 2t^{2}x + 2tx + t^{2} - 2t + 1 = 2$$

$$(1 + t^{2})x^{2} + (-2t^{2} + 2t)x + (t^{2} - 2t - 1) = 0$$

Pelas relações de Girard, o produto das raízes é dado por $x_0.x_t=\frac{t^2-2t-1}{1+t^2}.$ Como $x_0=1$, temos que $x_t=\frac{t^2-2t-1}{1+t^2}.$ Substituindo x_t em r_t :

$$y = tx - t + 1$$

$$y = t\left(\frac{t^2 - 2t - 1}{1 + t^2}\right) - t + 1$$

$$y = \frac{t^3 - 2t^2 - t}{1 + t^2} - t + 1$$

$$y = \frac{-t^2 - 2t + 1}{t^2 + 1}$$

Teorema 3.2. Seja $C \subset \mathbb{R}^2$ a cônica de equação $ax^2 + by^2 = c$ com $a, b, c \in \mathbb{Q}$. Se $P_0 = (x_0, y_0) \in \mathbb{Q}^2 \cap C$, então todos os outros pontos do conjunto $\mathbb{Q}^2 \cap C$ são da forma

$$\left(\frac{bt^2x_0 - 2bty_0 - ax_0}{bt^2 + a}, \frac{-bt^2y_0 - 2atx_0 + ay_0}{bt^2 + a}\right)$$

em que $t \in \mathbb{Q}$, $bt^2 + a \neq 0$.

Demonstração. Seja $r_t: y-y_0=t(x-x_0)$ a família de retas que passa por P_0 . Para cada t racional, temos que r_t possui coeficientes racionais, visto que $P_0\in\mathbb{Q}^2\cap C$. Dessa forma, pela Proposição 3.1 r_t será secante ou tangente à cônica em outro ponto do conjunto $\mathbb{Q}^2\cap C$. Assim, substituindo a equação da reta $y=y_0+t(x-x_0)$ na equação da cônica obtemos uma equação de grau 2:

$$ax^2 + b(y_0 + t(x - x_0))^2 = c$$

$$(a+bt^2)x^2 + (2by_0t - 2bt^2x_0)x + (by_0^2 - 2by_0tx_0 + bt^2x_0^2 - c) = 0$$
 (5)

Como $P_0 \in C$, podemos escrever C da seguinte maneira:

$$C: ax^2 + by^2 = c \Rightarrow ax_0^2 + by_0^2 = c \Rightarrow by_0^2 - c = -ax_0^2$$
 (6)

155

Revista de Matemática de Ouro Preto 2021

Substituindo o resultado anterior, 6, na equação 5, temos:

$$(a+bt^2)x^2 + (2by_0t - 2bt^2x_0)x + (-2by_0tx_0 + bt^2x_0^2 - ax_0^2) = 0$$
 (7)

Se a cônica $C: ax^2+by^2=c$ for uma elipse, então $a,\ b$ e c são ambos positivos ou negativos e, portanto, $a+bt^2$ é sempre positivo ou negativo para todo t real. Em particular, concluímos que $a+bt^2\neq 0$ será não nulo para todo t racional. Todavia, se C for uma hipérbole, temos que a>0 e b<0 ou a<0 e b>0 e, neste caso, $t_0=\sqrt{\frac{-a}{b}}$ e $t_1=-\sqrt{\frac{-a}{b}}$ são soluções reais da equação $a+bt^2=0$. Se t_0 (respectivamente t_1) é um número racional então temos a reta $r_{t_0}:y-y_0=t_0(x-x_0)$ (respectivamente r_{t_1}). Substituindo $t^2=-\frac{a}{b}$ na equação (7), temos:

$$+ \left(2by_0t - 2b\left(-\frac{a}{b}\right)x_0\right)x + \left(-2by_0tx_0 + b\left(-\frac{a}{b}\right)x_0^2 - ax_0^2\right) = 0 \Rightarrow$$

$$(2by_0t + 2ax_0)x = -(-2by_0tx_0 - ax_0^2 - ax_0^2) \Rightarrow$$

$$(2by_0t + 2ax_0)x = (2by_0t + 2ax_0)x_0 \Rightarrow$$

$$x = x_0.$$

Daí, como era de se esperar, uma vez que o coeficiente do termo quadrático x^2 da equação (7) se anula, temos uma equação do primeiro grau na qual, por construção, x_0 é solução. Portanto, a única solução da equação (7) é o ponto x_0 e, portanto, a reta $r_{t_0}: y-y_0=t_0(x-x_0)$ (respectivamente r_{t_1}) é tangente a cônica no ponto (x_0,y_0) .

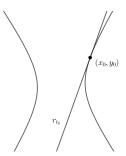


Figura 5: Hipérbole com reta r_{t_0} tangente no ponto (x_0, y_0) .

Excetuando-se este caso particular da hipérbole no qual $\sqrt{\frac{-a}{b}}$ é um número racional, no caso geral o coeficiente do termo quadrático $(a+bt^2)$ é não nulo para todo $t \in \mathbb{Q}$. Deste modo, Pelas relações de Girard, se x_0 e x_t são raízes, então:

$$x_0 \cdot x_t = \left(\frac{-2by_0 t x_0 + bt^2 x_0^2 - a x_0^2}{a + bt^2}\right)$$
$$x_t = \left(\frac{-2by_0 t + bt^2 x_0 - a x_0}{a + bt^2}\right)$$

Para encontrarmos a coordenada y_t , vamos substituir o valor de x_t na equação de r_t :

$$y_{t} = y_{0} + t(x_{t} - x_{0})$$

$$y_{t} = y_{0} + t\left(\frac{-2by_{0}t + bt^{2}x_{0} - ax_{0}}{a + bt^{2}} - x_{0}\right)$$

$$y_{t} = \frac{-bt^{2}y_{0} - 2atx_{0} + ay_{0}}{a + bt^{2}}$$

Portanto, a partir de $P_0=(x_0,y_0)$, concluímos que todos os outros pontos do conjunto $\mathbb{Q}\cap C$ são da forma

$$\left(\frac{bt^2x_0 - 2bty_0 - ax_0}{a + bt^2}, \frac{-bt^2y_0 - 2atx_0 + ay_0}{a + bt^2}\right),$$

$$t \in \mathbb{Q} \ e \ a + bt^2 \neq 0$$

4 Soma de dois quadrados

Nesta seção estudaremos as propriedades de um número inteiro que pode ser escrito como soma de dois quadrados, isto é, buscaremos soluções inteiras para a equação $x^2 + y^2 = n$. A ideia de representar um número como soma de dois quadrados pode surgir naturalmente, como ao buscar triângulos retângulos de lados inteiros. Utilizaremos o método da secante de Fermat e o Teorema 3.2, que parametriza o conjunto de pontos \mathbb{Q}^2 em cônicas com coeficientes racionais, serão de fundamental importância para a conclusão dos resultados dessa seção.

Teorema 4.1. Seja $n \in \mathbb{N}$, então n é soma de dois quadrados de racionais que não são inteiros se, e somente se, n for soma de dois quadrados de inteiros.

Demonstração. Para a demonstração desde teorema, usaremos [7] como referência.

Suponhamos que $n \in \mathbb{N}$ seja soma de dois quadrados racionais, ou seja, $n = p_1^2 + p_2^2 \operatorname{com} p_1, p_2 \in \mathbb{Q}$ e $p_1, p_2 \notin \mathbb{Z}$.

Seja $P=(p_1,p_2)$ um ponto do círculo $x^2+y^2=n$ e seja $M=(m_1,m_2)\in\mathbb{Z}^2$ tal que $|m_1-p_1|\leq \frac{1}{2}$ e $|m_2-p_2|\leq \frac{1}{2}$.

Se a reta l que contém o segmento \overline{MP} for tangente ao círculo $x^2+y^2=n$, teremos o triângulo OPM retângulo no ponto de tangência, em P, como na Figura 6.

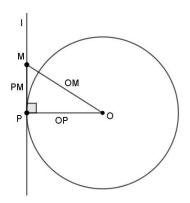


Figura 6: Círculo $x^2 + y^2 = n$.

Dessa forma, pelo Teorema de Pitágoras, teremos $||\overline{OM}||^2 = ||\overline{OP}||^2 + ||\overline{PM}||^2$. No entanto, sabemos que:

$$||\overline{OM}||^2 \in \mathbb{Z}, \, \mathrm{pois} \, M, O \in \mathbb{Z}^2$$

$$||\overline{OP}||^2 = (\sqrt{(p_1 - 0)^2 + (p_2 - 0)^2})^2 = p_1^2 + p_2^2 = n \in \mathbb{N}$$

 $\text{Logo } ||\overline{PM}||^2 \in \mathbb{Z} \text{ uma vez que } ||\overline{OM}||^2 \text{ e } ||\overline{OP}||^2 \text{ são números inteiros.}$

Contudo
$$||\overline{PM}||^2 = (\sqrt{(m_1 - p_1)^2 + (m_2 - p_2)^2})^2 = |m_1 - p_1|^2 + |m_2 - p_2|^2 \le (\frac{1}{2})^2 + (\frac{1}{2})^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
. Como $||\overline{PM}||^2 \ne 0$, temos que $||\overline{PM}||^2 \ne \mathbb{Z}$, o que é uma contradição.

Logo, concluímos que l é secante ao círculo.

A reta l e o círculo $x^2+y^2=n$ possuem coeficientes racionais e se interceptam em um ponto $P\in\mathbb{Q}^2$. Dessa forma, pelo método das secantes de de Fermat, temos um outro ponto $Q=(q_1,q_2)\in\mathbb{Q}^2$ de interseção.

Seja d o mmc dos denominadores das frações irredutíveis p_1 , p_2 que definem P. Vamos definir $c = d||\overline{PM}||^2$. Como $||\overline{PM}||^2 \leq \frac{1}{2}$, temos que c < d. Assim:

$$c = d||\overline{PM}||^2 = d(|m_1 - p_1|^2 + |m_2 - p_2|^2) = d[m_1^2 + m_2^2 + p_1^2 + p_2^2 - 2(p_1m_1 + p_2m_2)] = d[m_1^2 + m_2^2 + n - 2(p_1m_1 + p_2m_2)] \in \mathbb{Z}.$$

O ponto Q, interseção entre a reta e o círculo, pode ser obtido da seguinte forma:

$$Q = P + t(M - P) = (p_1, p_2) + t[(m_1, m_2) - (p_1, p_2)] = (p_1 + t(m_1 - p_1), p_2 + t(m_2 - p_2)), t \in \mathbb{Q}$$

O produto escalar $\langle Q,Q\rangle=\langle (q_1,q_2),(q_1,q_2)\rangle=q_1^2+q_2^2=n,$ já que Q pertence ao círculo $x^2+y^2=n.$

Seja
$$v = M - P = (m_1 - p_1, m_2 - p_2)$$
. Então:

$$Q = P + tv$$

$$Q \cdot Q = (P + tv) \cdot (P + tv)$$

$$n = P \cdot P + 2t(P \cdot v) + t^{2}(v \cdot v)$$

Como P é um ponto do círculo, temos que $P \cdot P = n$. Logo, $2t(P \cdot v) + t^2(v \cdot v)$ deve ser igual a 0.

Temos ainda que
$$v\cdot v=||\overline{PM}||^2=\frac{c}{d}.$$
 Logo,
$$2t(P\cdot v)+t^2(v\cdot v)=0$$

$$t(2(P\cdot v)+t(v\cdot v))=0$$

$$2(P\cdot v)+t(v\cdot v)=0$$

$$t=\frac{-2(P\cdot v)}{(v\cdot v)}$$

$$t = \frac{-2(p_1(m_1 - p_1) + p_2(m_2 - p_2))}{\frac{c}{d}}$$

$$t = \frac{-2(p_1m_1 + p_2m_2 - n)}{\frac{c}{d}}$$

$$t = \frac{d(2n - 2(p_1m_1 + p_2m_2))}{c}$$

$$ct = d(2n - 2(p_1m_1 + p_2m_2))$$
(8)

Sabemos que: $\frac{c}{d}=m_1^2+m_2^2+p_1^2+p_2^2-2(p_1m_1+p_2m_2)$. Então, a equação 8 pode ser escrita como:

$$ct = d(2n - 2(p_1m_1 + p_2m_2))$$

$$ct = d(2n + \frac{c}{d} - n - m_1^2 - m_2^2)$$

$$ct = c + d(n - m_1^2 - m_2^2).$$

Para concluir a prova, vamos mostrar que cq_1 e cq_2 são números inteiros. Para isso, multipliquemos q_i , i=1,2, por c.

$$Q = P + t(M - P)$$

$$q_i = p_i + t(m_i - p_i)$$

$$cq_i = cp_i + (ct)(m_i - p_i)$$

$$cq_i = cp_i + [c + d(n - m_1^2 - m_2^2)](m_i - p_i)$$

$$cq_i = cp_i + cm_i - cp_i + d(n - m_1^2 - m_2^2)(m_i - p_i)$$

$$cq_i = cm_i + d(n - m_1^2 - m_2^2)(m_i - p_i)$$

Os números c, m_i , n, dp_1 e dp_2 , são inteiros. Logo, cq_i é inteiro e portanto o mmc dos denominadores das frações q_1 e q_2 que definem o ponto Q são menores ou iguais a c que por sua vez é menor do que o mmc dos denominadores das frações p_1 e p_2 que definem o ponto P.

Analogamente ao que foi feito com o ponto $P=(p_1,p_2)$ tomemos $U=(u_1,u_2)\in \mathbb{Z}^2$ tal que $|u_1-q_1|\leq \frac{1}{2}$ e $|u_2-q_2|\leq \frac{1}{2}$. Repetindo todas as contas teremos que a reta que contém o segmento \overline{UQ} é secante ao círculo $x^2+y^2=$

n interceptando este em outro ponto $R = (r_1, r_2) \in \mathbb{Q}^2$, tal que o mmc dos denominadores das frações r_1 e r_2 que definem o ponto R é menor do que o mmc dos denominadores das frações q_1 e q_2 que definem o ponto Q o qual é menor do que o mmc dos denominadores das frações p_1 e p_2 que definem o ponto P.

Deste modo, se (x_0,y_0) é uma solução racional de $x^2+y^2=n$, então podemos construir uma sequência $(x_j,y_j)\in\mathbb{Q}$ de soluções tal que o mmc dos denominadores de x_{j+1} e y_{j+1} é menor do que o mmc dos denominadores de x_j e y_j .

Repetindo este processo um número finito de vezes encontraremos um ponto $V=(v_1,v_2)$ cujo os denominadores das frações v_1 e v_2 possuem mmc igual a 1, ou seja, V pertence a \mathbb{Z}^2 .

Reciprocamente suponhamos que $n \in \mathbb{Z}$ seja soma de dois quadrados de inteiros, ou seja, $n=a_1^2+a_2^2$ com $a_1, a_2 \in \mathbb{Z}$. Seja $A=(a_1,a_2) \in \mathbb{Z}^2$ um ponto do círculo $x^2+y^2=n$. Pelo Teorema 3.2 podemos parametrizar o conjunto dos ponto racionais de um círculo a partir de um ponto racional. Assim, vamos encontrar os outros pontos racionais do círculo $x^2+y^2=n$ a partir do ponto A. O teorema nos diz que estes pontos são do tipo:

$$\left(\frac{t^2a_1-2ta_2-a_1}{t^2+1}, \frac{-t^2a_2-2ta_1+a_2}{t^2+1}\right), t \in \mathbb{Q}$$

ou seja, pontos racionais. Logo, conseguimos escrever n como soma de dois quadrados de racionais, com denominador diferente de 1.

A seguir enunciaremos um lema que garante que se dois números inteiros podem ser escritos como soma de dois quadrados, o produto entre eles também pode. Este lema será usado na demonstração de um teorema que nos fornece condições para identificar primos que são soma de dois quadrados. Para a demonstrações de ambos os resultados, usaremos [13] como referência.

Lema 4.1. Se a e b são dois números inteiros tais que cada um é soma de dois quadrados, então o produto ab também é soma de dois quadrados.

Demonstração. Sejam a e b dois números que podem ser escritos como soma de dois quadrados, ou seja, $a=x^2+y^2$ e $b=w^2+z^2$, com x,y,w e $z\in\mathbb{Z}$. Observe que o produto desses números é:

$$ab = (x^{2} + y^{2})(w^{2} + z^{2})$$

$$ab = x^{2}w^{2} + x^{2}z^{2} + y^{2}w^{2} + y^{2}z^{2}$$

$$ab = x^{2}w^{2} + y^{2}z^{2} + x^{2}z^{2} + y^{2}w^{2}$$

Somar e subtrair um mesmo termo não altera a igualdade. Então,

$$ab = x^{2}w^{2} + y^{2}z^{2} + x^{2}z^{2} + y^{2}w^{2} + 2(xw)(yz) - 2(xw)(yz)$$

$$ab = x^{2}w^{2} + 2(xw)(yz) + y^{2}z^{2} + x^{2}z^{2} - 2(xz)(yw) + y^{2}w^{2}$$

$$ab = (xw + yz)^{2} + (xz - yw)^{2}$$

Logo, $ab=m^2+n^2$ com m=xw+yz e n=xz-yw, ou seja, o produto de a e b também é soma de dois quadrados. \Box

Teorema 4.2. Seja p um número primo. A equação $x^2 + y^2 = p$ possui solução inteira se, e somente se, p = 2 ou $p \equiv 1 \pmod{4}$.

Demonstração. Suponha $p=x^2+y^2$ com x e y inteiros. Observe que se a é um número inteiro, $a^2\equiv 0\pmod 4$ ou $a^2\equiv 1\pmod 4$. De fato, os possíveis restos de $a\in\mathbb{Z}$ por 4 são 0,1,2 e 3. Assim,

$$a \equiv 0 \pmod{4} \Rightarrow a^2 \equiv 0 \pmod{4}$$

$$a \equiv 1 \pmod{4} \Rightarrow a^2 \equiv 1 \pmod{4}$$

$$a \equiv 2 \pmod{4} \Rightarrow a^2 \equiv 2^2 = 4 \equiv 0 \pmod{4}$$

$$a \equiv 3 \pmod{4} \Rightarrow a^2 \equiv 3^2 = 9 \equiv 1 \pmod{4}$$

Dessa forma, na equação $x^2 + y^2 = p$, temos as seguintes possibilidades:

$$\bullet x^2 \equiv y^2 \equiv 0 \pmod{4} : x^2 + y^2 \equiv 0 + 0 \pmod{4} \Rightarrow p \equiv 0 \pmod{4}$$

$$\bullet x^2 \equiv y^2 \equiv 1 \pmod{4} : x^2 + y^2 \equiv 1 + 1 \pmod{4} \Rightarrow p \equiv 2 \pmod{4}$$

$$\bullet x^2 \equiv 0 \pmod{4} \ \mathbf{e} \ y^2 \equiv 1 \pmod{4} : x^2 + y^2 \equiv 0 + 1 \pmod{4} \Rightarrow p \equiv 1 \pmod{4}$$

Observe que a condição $x^2 \equiv 1 \pmod{4}$ e $y^2 \equiv 0 \pmod{4}$ é equivalente à terceira possibilidade. Como p é primo, então p = 2 ou $p \equiv 1 \pmod{4}$.

Reciprocamente se p=2, x=1 e y=1 satisfazem esta equação. Logo, se p=2 a equação $x^2+y^2=p$ possui solução inteira. Vamos verificar se o mesmo ocorre para $p\equiv 1\pmod 4$. vamos demonstrar que todo $p\equiv 1\pmod 4$ pode ser escrito como soma de dois quadrados.

Seja $k=[\sqrt{p}]$, ou seja, k o maior número inteiro que é menor ou igual a \sqrt{p} . Como p é primo, então \sqrt{p} não é um número inteiro. Dessa forma, $k<\sqrt{p}< k+1$.

Fixado um inteiro x consideremos a função f(a,b)=a+bx e tomemos os pares de inteiros (a,b) tais que $0 \le a \le k$ e $0 \le b \le k$. O número de pares ordenados (a,b) possíveis é $(k+1)(k+1)=(k+1)^2$. Como $(k+1)>\sqrt{p}$, então $(k+1)^2>(\sqrt{p})^2$. Logo, o número de pares (a,b) é maior que p.

Sabemos que o conjunto de todas as classes residuais módulo p possui exatamente p elementos, então se considerarmos f(a,b) módulo p, teremos mais números do que classes de resíduos e, pelo princípio da casa dos pombos, existem dois pares inteiros distintos (a_1,b_1) e (a_2,b_2) tais que $f(a_1,b_1) \equiv f(a_2,b_2)$ \pmod{p} , ou seja, $a_1 + b_1 x \equiv a_2 + b_2 x \pmod{p}$.

Subtrair um mesmo termo nos dois membros de uma congruência não a altera.

Assim, podemos escrever:

$$a_{1} + b_{1}x - a_{2} \equiv a_{2} + b_{2}x - a_{2} \pmod{p}$$

$$a_{1} + b_{1}x - a_{2} \equiv b_{2}x \pmod{p}$$

$$a_{1} + b_{1}x - a_{2} - b_{1}x \equiv b_{2}x - b_{1}x \pmod{p}$$

$$a_{1} - a_{2} \equiv b_{2}x - b_{1}x \pmod{p}$$

$$a_{1} - a_{2} \equiv -x(b_{1} - b_{2}) \pmod{p}$$

Podemos elevar a congruência ao quadrado sem alterá-la. Então,

$$(a_1 - a_2)^2 \equiv [-x(b_1 - b_2)]^2 \pmod{p}$$
$$(a_1 - a_2)^2 \equiv (-x)^2(b_1 - b_2)^2 \pmod{p}$$
$$(a_1 - a_2)^2 \equiv x^2(b_1 - b_2)^2 \pmod{p}$$

Se p é da forma 4q+1 (que é o mesmo que $p\equiv 1\pmod 4$) então existe $x\in\mathbb{Z}$ tal que $x^2\equiv -1\pmod p$, sendo p um número primo. Para a demonstração deste resultado, consultar o Teorema 1.3, na página 3, da referência bibliográfica [13]. Dessa forma,

$$(a_1 - a_2)^2 \equiv -1(b_1 - b_2)^2 \pmod{p}$$

Denotemos $m=a_1-a_2$ e $n=(b_1-b_2)$. Assim, a congruência pode ser escrita como

$$m^{2} \equiv -n^{2} \pmod{p}$$

$$m^{2} + n^{2} \equiv -n^{2} + n^{2} \pmod{p}$$

$$m^{2} + n^{2} \equiv 0 \pmod{p}$$

Dessa forma, concluímos que $p|(m^2+n^2)$.

Por construção (a_1, b_1) e (a_2, b_2) são pares ordenados distintos, ou seja, m e n não podem ser nulos. Assim, $m^2 + n^2 > 0$. Ainda a_1 e a_2 são inteiros e pertencem

ao intervalo [0,k], então $m=a_1-a_2$ pertence ao intervalo $-k \le m \le k$ e, analogamente, temos $n=b_1-b_2$ com $-k \le n \le k$. Como $k < \sqrt{p}$, então $|m| < \sqrt{p}$ e $|n| < \sqrt{p}$. Consequentemente, $m^2 < (\sqrt{p})^2 = p$ e $n^2 < (\sqrt{p})^2 = p$. Assim, $m^2 + n^2 . Deste modo <math>m^2 + n^2$ é um inteiro divisível por p e $0 < m^2 + n^2 < 2p$, o que implica que, $m^2 + n^2 = p$.

Proposição 4.1. Sejam a, b e m inteiros com m > 0 e mdc(a, m) = d. A congruência $ax \equiv b \pmod{m}$ não possui nenhuma solução se $d \nmid b$ e possui exatamente d soluções incongruentes módulo m se $d \mid b$.

Demonstração. Para esta demonstração, usaremos [13] como referência.

Dado que a e b são inteiros, temos que $ax \equiv b \pmod{m}$ se, e somente se, m|(ax-b) e existe um $y \in \mathbb{Z}$ tal que ax-b=my, ou seja, que ax-my=b. Observe que ax-my=b é uma equação diofantina e pelo Teorema 2.2 sabemos que se $d \nmid b$ esta equação não possui solução.

Por outro lado, se d|b, novamente pelo Teorema 2.2, esta equação possui infinitas soluções e são todas da forma $x=x_0-\left(\frac{m}{d}\right)k$ e $y=y_0-\left(\frac{a}{d}\right)k$, sendo (x_0,y_0) uma solução particular dessa equação e $k\in\mathbb{Z}$.

Assim, a congruência $ax \equiv b \pmod m$ irá possuir infinitas soluções que serão da forma $x = x_0 - \left(\frac{m}{d}\right)k$. Estamos interessados na quantidade de soluções que são duas a duas incongruentes módulo m, uma vez que toda solução particular determina, automaticamente, uma infinidade de soluções congruentes entre si. Se x_1 e x_2 forem congruentes módulo m, temos:

$$x_0 - \left(\frac{m}{d}\right) k_1 \equiv x_0 - \left(\frac{m}{d}\right) k_2 \pmod{m}$$

$$x_0 - x_0 - \left(\frac{m}{d}\right) k_1 \equiv x_0 - x_0 - \left(\frac{m}{d}\right) k_2 \pmod{m}$$

$$- \left(\frac{m}{d}\right) k_1 \equiv -\left(\frac{m}{d}\right) k_2 \pmod{m}$$
(9)

mas a congruência 9 equivale à:

$$k_1 \equiv k_2 \left(\mod \frac{m}{\frac{m}{\operatorname{mdc}\left(\frac{m}{d}, m\right)}} \right) \tag{10}$$

como md
c $\left(\frac{m}{d},m\right)=\frac{m}{d},$ a congruência 10 equivale à:

$$k_1 \equiv k_2 \pmod{d}$$
.

Portanto, as soluções incongruentes são da forma $x=x_0-\left(\frac{m}{d}\right)k$, onde k percorre um sistema completo de resíduos módulo d.

Teorema 4.3. Um número $n \in \mathbb{N}$ pode ser escrito como soma de dois quadrados se, e somente se, tiver a fatoração da forma:

$$n = 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r} q_1^{\beta_1} q_2^{\beta_2} ... q_s^{\beta_s}$$

com p_i e q_j primos, $p_i \equiv 1 \pmod{4}$ e $q_j \equiv 3 \pmod{4}$, i = 1, 2, ..., r e j = 1, 2, ..., s sendo todos os expoentes β_j pares.

Demonstração. Suponhamos que o número n tenha a fatoração $n=2^{\alpha}p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}q_1^{\beta_1}q_2^{\beta_2}...q_s^{\beta_s}$ e vamos provar que n pode ser escrito como soma de dois quadrados.

Todo número da forma 2^{α} pode ser representado como soma de dois quadrados. De fato,

se
$$\alpha$$
 é par, temos $2^{\alpha}=(2^{\frac{\alpha}{2}})^2+0^2$ se α é ímpar, temos $2^{\alpha}=(2^{\frac{\alpha-1}{2}})^2+(2^{\frac{\alpha-1}{2}})^2$

Pelo Teorema 4.2, todo p primo com $p \equiv 1 \pmod 4$ pode ser escrito como soma de dois quadrados. Além disso, pelo Lema 4.1, se dois números são soma de dois quadrados, então o produto destes números também é. Dessa forma, todos os $p_i^{\alpha_i}$ podem ser representados como soma de dois quadrados, assim como $p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$. Então, basta mostrarmos que $q_j^{\beta_j}$ também pode ser representado como

soma de dois quadrados.

Por hipótese, temos que todos os β_j são pares, então cada β_h pode ser escrito como $\beta_h = 2k, k \in \mathbb{Z}$. Logo,

$$q_i^{\beta_j} = q_i^{2k} = (q_i^k)^2.$$

Mas $(q_j^k)^2=(q_j^k)^2+0^2$, ou seja, $(q_j^k)^2=q_j^{2k}$ pode ser representado como soma de dois quadrados. Como todos 2^{α} , $p_i^{\alpha_i}$ e $q_j^{\beta_j}$ podem ser representados como soma de dois quadrados, concluímos pelo Lema 4.1 que o produto $n=2^{\alpha}p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}q_1^{\beta_1}q_2^{\beta_2}...q_s^{\beta_s}$ também pode.

Reciprocamente suponhamos que n seja soma de dois quadrados e que exista um β_j ímpar. Sem perda de generalidade, podemos considerar β_1 como tal ímpar.

Sejam a e b números que satisfazem a equação $a^2 + b^2 = n$ e d = mdc(a, b). Dessa forma, d|a e d|b e, assim, existem k_1 e k_2 inteiros tais que $a = dk_1$ e $b = dk_2$. Além disso, sabemos que ao dividir dois números pelo o mdc, eles tornam primos entre si. Então,

$$\operatorname{mdc}\left(\frac{a}{d}, \frac{b}{d}\right) = 1$$

$$\operatorname{mdc}\left(\frac{dk_1}{d}, \frac{dk_2}{d}\right) = 1$$

$$\operatorname{mdc}(k_1, k_2) = 1$$

Como $a=dk_1$ e $b=dk_2$ satisfazem a equação $a^2+b^2=n$, podemos escrever

$$(dk_1)^2 + (dk_2)^2 = n$$

$$d^2k_1^2 + d^2k_2^2 = n$$

$$d^2(k_1^2 + k_2^2) = n$$

Sendo $k=k_1^2+k_2^2$, podemos escrever $d^2k=n$ e concluir que $d^2|n$. Observe que k é soma de dois quadrados e que $k=\frac{n}{d^2}$, ou seja, k e $\frac{n}{d^2}$ possuem a mesma decomposição em fatores primos. Assim, como β_1 é um expoente ímpar de q_1 em n e todos os expoentes da decomposição de d^2 são pares, concluímos que o

expoente de q_1 em k também deve ser ímpar, uma vez que na divisão os expoentes de q_1 em n e d^2 são subtraídos. Visto que o expoente de q_1 é ímpar, então existe um número inteiro s tal que $k=q_1^{2s+1}r=q_1^{2s}q_1^1r=q_1q_1^{2s}r$, ou seja, $q_1|k$.

Como $\mathrm{mdc}(k_1,k_2)=1$ pelo Corolário 2.1 existem x e y inteiros tal que $k_1x+k_2y=1$. Elevando cada membro ao quadrado, obtemos:

$$(k_1x + k_2y)^2 = (1)^2$$

$$(k_1x)^2 + 2(k_1x)(k_2y) + (k_2y)^2 = 1$$

$$k_1^2x^2 + 2k_1xk_2y + k_2^2y^2 = 1$$
(11)

Vimos também que $q_1|k$, isto é, existe um t inteiro tal que $k=q_1t$. Por outro lado, sabemos que $k=k_1^2+k_2^2$, logo,

$$k_1^2 + k_2^2 = q_1 t$$
$$k_2^2 = q_1 t - k_1^2$$

Lembremos que $b=dk_2$, sendo $d=\operatorname{mdc}(a,b)$, então, $k_2=\frac{b}{d}$ e vamos substituir este valor na equação 11.

$$k_1^2 x^2 + 2k_1 x k_2 y + k_2^2 y^2 = 1$$

$$k_1^2 x^2 + 2k_1 x y \frac{b}{d} + y^2 (q_1 t - k_1^2) = 1$$

$$k_1^2 x^2 + 2k_1 x y \frac{b}{d} + y^2 q_1 t - y^2 k_1^2 = 1$$

Agrupando os termos que contém k_1 e q_1 :

$$k_1^2 x^2 + 2k_1 x y \frac{b}{d} + y^2 q_1 t - y^2 k_1^2 = 1$$

$$k_1^2 x^2 + 2k_1 x y \frac{b}{d} - y^2 k_1^2 + y^2 q_1 t = 1$$

$$\left(k_1 x^2 + 2x y \frac{b}{d} - y^2 k_1\right) k_1 + (y^2 t) q_1 = 1$$

Os números $u=k_1x^2+2xy\frac{b}{d}-y^2k_1$ e $v=y^2t$ são inteiros. Como $uk_1+vq_1=1$, pela Observação 2.1 temos que $\mathrm{mdc}(k_1,q_1)=1$. De forma análoga, $\mathrm{mdc}(k_2,q_1)=1$. Sabemos que $q_1|k$, isto é, $k\equiv 0\pmod{q_1}$. Mas $k=k_1^2+k_2^2$, então

$$k \equiv 0 \pmod{q_1}$$

$$k_1^2 + k_2^2 \equiv 0 \pmod{q_1}$$

$$k_1^2 + k_2^2 - k_2^2 \equiv 0 - k_2^2 \pmod{q_1}$$

$$k_1^2 \equiv -k_2^2 \pmod{q_1}$$

Por outro lado, como $1 = mdc(k_1, q_1)|k_2$, pela Proposição 4.1 sabemos que existe um x de forma que $k_1x \equiv k_2 \pmod{q_1}$. Deste modo:

$$k_1 x \equiv k_2 \pmod{q_1}$$

 $k_1^2 x^2 \equiv k_2^2 \pmod{q_1}$
 $k_1^2 x^2 + k_1^2 \equiv k_2^2 - k_2^2 \pmod{q_1}$
 $k_1^2 (x^2 + 1) \equiv 0 \pmod{q_1}$

Entretanto, como $\operatorname{mdc}(k_1, q_1) = 1$, temos que $q_1 \nmid k_1$ e portanto $q_1 \nmid k_1^2$.

Vimos que $k_1^2(x^2+1)\equiv 0\pmod{q_1}$, ou seja, que $q_1|k_1^2(x^2+1)$. Como q_1 é primo, $q_1|k_1^2$ ou $q_1|(x^2+1)$, mas $q_1\nmid k_1^2$, então $q_1|(x^2+1)$, ou seja, $x^2\equiv -1\pmod{q_1}$. Mas, pelo Teorema 1.3 de [13], $x^2\equiv -1\pmod{q_1}$ se e somente se p=2 ou $p\equiv 1\mod{4}$. Mas a equação $x^2\equiv -1\pmod{q_1}$ possui solução para $q_1\equiv 3\pmod{4}$ o que nos dará uma contradição. Portanto, todos os β_j são pares.

5 Descenso infinito de Fermat

O método do descenso infinito de Fermat (quando aplicável) permite mostrar que uma equação $f(x_1, x_2, ..., x_n) = 0$ não possui soluções inteiras positivas ou, sob certas condições, até mesmo encontrar todas as soluções inteiras desta equação. Para o estudo desde método, usaremos [6] e [13] como referências.

Ao considerarmos $A = \{(x_1,...,x_n) \in \mathbb{Z}^n | f(x_1,...,x_n) = 0\}$ sendo o conjunto solução de f e este diferente de vazio, queremos construir uma função $\phi: A \to \mathbb{N}$ e tomar a solução $(x_1,...,x_n) \in A$ sendo $\phi(x_1,...,x_n)$ a menor possível. O descenso consiste em obter, a partir desta solução mínima, uma ainda menor, o que nos leva a uma contradição provando que A é realmente vazio. Para ilustrar este método de Fermat, vejamos um exemplo.

Exemplo 5.1. (Fermat) Demonstre que a equação $x^4+y^4=z^2$ não possui soluções inteiras positivas.

 $\begin{array}{l} \textit{Demonstração}. \text{ Suponhamos que a equação } x^4+y^4=z^2 \text{ possua uma solução inteira com } x,y,z>0. \text{ Assim, existe uma solução } (a,b,c) \text{ no qual } c \text{ \'e mínimo, visto que pelo Princípio da Boa Ordenação todo conjunto de inteiros positivos tem um menor elemento. Temos que <math>a$ e b são primos entre si. De fato, se $d=\operatorname{mdc}(a,b)>1$ podemos substituir a e b por $\frac{a}{d}$ e $\frac{b}{d}$, respectivamente. Notemos que (a,b,c) é solução da equação $x^4+y^4=z^2$, então $\left(\frac{a}{d}\right)^4+\left(\frac{b}{d}\right)^4=\frac{a^4+b^4}{d^4}=\left(\frac{c}{d^2}\right)^2$, ou seja, $\left(\frac{a}{d},\frac{b}{d},\frac{c}{d^2}\right)$ também é solução da equação e temos $\frac{c}{d^2}< c$, o que contradiz a minimalidade de c. (a^2,b^2,c) é um termo pitagórico primitivo (ver [8]), visto que $(a^2)^2+(b^2)^2=c^2$ e $\operatorname{mdc}(a^2,b^2)=1$. Assim, existem números inteiros positivos m e n, m>n, que são primos entre si de forma que

$$a^2 = m^2 - n^2$$
, $b^2 = 2mn$ e $c = m^2 + n^2$.

A igualdade $a^2=m^2-n^2$ implica que $a^2+n^2=m^2$, ou seja, (a,n,m) é uma terna pitagórica primitiva. Como a e n são primos entre si, ambos números não podem ser pares, então suponhamos que a seja ímpar. Se n também for ímpar, temos:

$$a^2 = (2r+1)^2 = 4r^2 + 4r + 1 = 4(r^2+r) + 1 \Rightarrow a^2 \equiv 1 \pmod{4}$$

 $n^2 = (4s+1)^2 = 4s^2 + 4s + 1 = 4(s^2+s) + 1 \Rightarrow n^2 \equiv 1 \pmod{4}$

Assim,

$$a^2 + n^2 \equiv 1 + 1 = 2 \pmod{4}$$
.

Mas $a^2+n^2=m^2$ e todo número ao quadrado é congruente a 0 ou 1 módulo 4 (ver [8]), o que nos leva à uma contradição. Portanto, n^2 deve ser par e, assim concluímos que m^2 é ímpar. Consequentemente, temos m ímpar e n par.

Já pela igualdade $b^2=2mn$, concluímos que b é par. Ainda $\operatorname{mdc}(2n,m)=1$, de fato, como m e n são coprimos, temos $\operatorname{mdc}(n,m)=1$, e isto implica que $\operatorname{mdc}(2n,m)=\operatorname{mdc}(2,m)$, sendo $\operatorname{mdc}(2,m)=1$ ou 2. Mas $\operatorname{mdc}(2,m)=2$ é um absurdo, pois neste caso 2|m o que implica em m ser par, mas sabemos que m é ímpar. Então, $\operatorname{mdc}(2n,m)=\operatorname{mdc}(2,m)=1$.

Como $(2n)m=b^2$ é um quadrado perfeito, 2n e m também são. De fato, suponhamos que 2n não seja um quadrado perfeito. Neste caso, na fatoração de 2n existe um fator primo $p_i^{\alpha_i}$ com α_i ímpar, isto é, um fator que aparece um número ímpar de vezes no produto e como $\mathrm{mdc}(2n,m)=1$ este fator $p_i^{\alpha_i}$ não está na fatoração de m. Por outro lado, sabemos que $b^2=(2n)n$ é um quadrado perfeito, então o fator p_i deve aparecer uma quantidade par de vezes, o que implica em um absurdo. Dessa forma, temos que 2n e m são ambos quadrados perfeitos e, então, existem inteiros positivos s e t tais que $2n=4s^2$ e $m=t^2$.

Por outro lado, dado que $a^2 + n^2 = m^2$, então existirão inteiros positivos i e j, primos entre si tais que:

$$a = i^2 - j^2$$
, $n = 2ij$ e $m = i^2 + j^2$

Assim, $s^2=\frac{n}{2}=ij$, então i e j serão quadrados perfeitos, digamos $i=u^2$ e $j=v^2$.

Desta maneira $t^2=m=i^2+j^2,\,i=u^2$ e $j=v^2$. Logo,

$$t^2 = u^4 + v^4,$$

ou seja, (u, v, t) é outra solução para a equação original, $x^4 + y^4 = z^2$. No entanto,

$$t < t^2 = m < m^2 < m^2 + n^2 = c \Rightarrow t < c$$

Lembremos que $t \neq 0$, pois $m \neq 0$. Isto contradiz a minimalidade de c, concluindo a demonstração.

6 O Último Teorema de Fermat

O Último Teorema de Fermat é um famoso teorema matemático conjecturado por Pierre de Fermat no qual afirma que a equação $x^n + y^n = z^n$ não possui solução inteira com x, y e z pertencentes a $\mathbb{Z}/\{0\}$ para n > 2.

De acordo com [5] e [14], Fermat, em 1637, afirmou ainda que conhecia a demonstração deste teorema, mas que na margem do papel não havia espaço para escrevê-la. Assim, este teorema desafiou diversos matemáticos durante mais de 300 anos em busca de uma demonstração. Foi somente em 1995 que o matemático Andrew Wiles [15] apresentou a demonstração desse teorema.

Neste trabalho, demonstraremos este teorema para o caso em que n=3. Para isso, usaremos [2] e [12] como referências.

Lema 6.1. Todas as soluções da equação $s^3 = a^2 + 3b^2$ em inteiros positivos tais que mdc(a, b) = 1 e s é ímpar são dadas por:

$$s = u^2 + 3v^2$$
, $a = u(u^2 - 9v^2)$, $b = 3v(u^2 - v^2)$,

 $com\ u, v \in \mathbb{Z}\ e\ mdc(u, 3v) = 1.$

Demonstração. Seja \Im o conjunto de todos os inteiros da forma $a^2 + 3b^2$ com $a, b \in \mathbb{Z}$. \Im é fechado para a multiplicação, visto que

$$(a^2 + 3b^2)(c^2 + 3d^2) = (ac \pm 3bd)^2 + 3(ad \mp bc)^2$$

sendo essa igualdade assegurada com os sinais correspondentes. Dado $s^3 = a^2 + 3b^2$, utilizando o hipótese de s ser ímpar e $\mathrm{mdc}(a,b) = 1$ podemos escrever $s = u^2 + 3v^2$ com $u,v \in \mathbb{Z}$. A prova desta igualdade foge ao escopo deste trabalho, para a demonstração deste resultado, consultar a referência bibliográfica [12]: Lema 4.7, página 30.

Elevando s ao cubo, temos:

$$s^{3} = (u^{2} + 3v^{2})^{3}$$

$$s^{3} = (u^{2} + 3v^{2})(u^{2} + 3v^{2})^{2}$$

$$s^{3} = (u^{2} + 3v^{2})(u^{4} + 6u^{2}v^{2} + 9v^{4})$$

$$s^{3} = (u^{2} + 3v^{2})(u^{4} - 6u^{2}v^{2} + 9v^{4} + 12u^{2}v^{2})$$

$$s^{3} = (u^{2} + 3v^{2})[(u^{2} - 3v^{2})^{2} + 3(2uv)^{2}]$$

$$s^{3} = [u(u^{2} - 3v^{2}) - 3v(2uv)]^{2} + 3[u(2uv) + v(u^{2} - 3v^{2})]^{2}$$

$$s^{3} = (u^{3} - 3uv^{2} - 6uv^{2})^{2} + 3(2vu^{2} + vu^{2} - 3v^{3})^{2}$$

$$s^{3} = (u(u^{2} - 9v^{2}))^{2} + 3(3v(u^{2} - v^{2}))^{2}$$

Como, por hipótese, $s^3=a^2+3b^2$, segue que $a=u(u^2-9v^2)$ e $b=3v(u^2-v^2)$.

Daí, já que
$$mdc(a, b) = 1$$
, então $mdc(u, 3v) = 1$.

Teorema 6.1. A equação $X^3 + Y^3 = Z^3$ não possui solução inteira, com X, Y e Z pertencentes a $\mathbb{Z}/\{0\}$.

Demonstração. Suponhamos x, y e z números inteiros não nulos e, dois a dois, primos entre si tais que $x^3 + y^3 = z^3$. Note que sob estas hipóteses, x, y e z são números distintos.

Sabemos que x, y e z são primos entre si, então dois destes números não podem ser pares. Mas, se forem todos ímpares, teríamos que a soma de dois ímpares resulta em um ímpar, o que é falso. Portanto, exatamente um destes inteiros é par. É suficiente tomarmos x e y ímpares e z par uma vez que se considerarmos x par, y e z ímpares reescrevendo $z^3 + (-y)^3 = x^3$ teremos a soma de dois ímpares cúbicos resultando também em um número par cúbico. Deste modo, sejam x e y ímpares e z par.

Dentre todas as soluções da equação com as propriedades acima, escolhemos uma em que |z| é a menor escolha possível.

Como x e y são ambos ímpares, sabemos que (x+y) e (x-y) são pares e assim

existem inteiros a e b tais que (x+y)=2a e (x-y)=2b. Resolvendo o sistema gerado por estas duas últimas equações, temos que x=a+b e y=a-b. Como x e y são não nulos e primos entre si, a e b também são não nulos com $\mathrm{mdc}(a,b)=1$. Além disso, dado que x e y são ímpares e sabendo que obtemos resultado ímpar apenas com a soma ou subtração de dois números de paridades diferentes, podemos concluir que a e b são de paridades diferentes. Agora, substituindo os valores de x e y na equação inicial, temos

$$z^{3} = x^{3} + y^{3} = (a+b)^{3} + (a-b)^{3} = 2a(a^{2} + 3b^{2})$$

Visto que o quadrado de um número, assim como multiplicar um número por 3, não altera a paridade e sabendo que a e b tem paridades diferentes, temos que (a^2+3b^2) é ímpar. Dado que z é um inteiro par, temos que $z^3=(2j)^3=8j^3$ e $8|z^3$, portanto $8|2a(a^2+3b^2)$. Como (a^2+3b^2) é ímpar, temos que 8|2a. Dessa forma, concluímos que a é par e, consequentemente, b é ímpar.

Uma vez que a é par e b é ímpar, o $\operatorname{mdc}(2a,a^2+3b^2)=1$ ou 3. De fato, seja q primo e q^k um fator comum dos termos acima, ou seja, $2a=q^kc$ e $(a^2+3b^2)=q^kd$. Como (a^2+3b^2) é ímpar, $q\neq 2$. Então, $q^k|a$ e, assim, $q^k|3b^2$. Visto que $\operatorname{mdc}(a,b)=1$ e que $q^k|a$, temos que $q^k\nmid b$. Como $q^k|3b^2$, concluímos que k=1 e q=3, ou seja, 3 é um possível fator comum a 2a e a^2+3b^2 , assim como o 1, que é um fator comum a qualquer dois números. Dessa forma, consideremos os casos:

Caso 1:
$$mdc(2a, a^2 + 3b^2) = 1$$

Neste caso, $3 \nmid a$, pois se ocorresse o contrário teríamos $\operatorname{mdc}(2a, a^2 + 3b^2) \geq 3$. Da equação $z^3 = 2a(a^2 + 3b^2)$ e da fatoração única de inteiros em primos, temos que (2a) e $(a^2 + 3b^2)$ são cubos. Assim,

$$2a = r^3$$
$$a^2 + 3b^2 = s^3$$

onde s é ímpar e não é um múltiplo de 3 (pois $3 \nmid a$). Como s é ímpar e mdc(a, b) = 1, pelo Lema 6.1 podemos reescrever:

$$s = (u2 + 3v2)$$
$$a = u(u2 - 9v2)$$
$$b = 3v(u2 - v2)$$

com $u, v \in \mathbb{Z}$ e mdc(u, 3v) = 1.

Como b é ímpar, temos $3v(u^2-v^2)$ ímpar. Sabemos que apenas o produto de dois ímpares resulta em um ímpar, então 3v e (u^2-v^2) devem ser ímpares. Assim, como 3 é um número ímpar, v também deve ser ímpar. E, se v é ímpar, u é par, já que a subtração de números de paridades distintas resulta em um ímpar. Além disso, temos que u é não nulo. Como u|u e v|3v então $\mathrm{mdc}(u,v)|\mathrm{mdc}(u,3v)$ e daí $\mathrm{mdc}(u,v)=1$.

Seja q primo tal que q|2u. Como u é par, podemos afirmar que q|u. Suponhamos que q|(u+3v). Então, q|(u+3v)-u=3v, o que é um absurdo, pois $\mathrm{mdc}(u,3v)=1$. Analogamente, suponhamos que q|(u-3v). Assim, q|u-(u-3v)=3v, que é um absurdo. Logo, $\mathrm{mdc}(2u,u+3v)=\mathrm{mdc}(2u,u-3v)=1$. Do mesmo modo se \hat{q} é um primo tal que $\hat{q}|(u+3v)$ e $\hat{q}|(u-3v)$ então $\hat{q}|(u+3v)+(u-3v)$, ou seja, $\hat{q}|2u$, mas $\mathrm{mdc}(2u,u+3v)=1$ o que implica $\hat{q}=1$. O que nos dará um absurdo. Portanto podemos afirmar que 2u, (u+3v), (u-3v) são primos dois a dois. Das igualdades

$$r^{3} = 2a = 2.u(u^{2} - 9v^{2}) = 2u(u - 3v)(u + 3v)$$

podemos concluir que 2u, (u + 3v), (u - 3v) são cubos, ou seja,

$$2u = n^3$$
$$u - 3v = p^3$$
$$u + 3v = m^3$$

e temos que na terna (p,m,n) todos são diferentes de 0 (pois $u \neq 0$ e 3 não divide u), relativamente primos entre si dois a dois e satisfazem a equação $X^3 + Y^3 = Z^3$,

pois

$$2u = 2u$$

$$(u-3v) + (u+3v) = (2u)$$

$$p^{3} + m^{3} = n^{3}$$

com n par (pois possui a mesma paridade de n^3) e |z| > |n|. De fato,

$$|z^{3}| = |2a(a^{2} + 3b^{2})|$$

$$|z^{3}| = |2.u(u^{2} - 9v^{2})(a^{2} + 3b^{2})|$$

$$|z^{3}| = |2u(u - 3v)(u + 3v)(a^{2} + 3b^{2})|$$

$$|z^{3}| = |n^{3}.p^{3}m^{3}.(a^{2} + 3b^{2})|$$

Como b é ímpar, sabemos que $a^2 + 3b^2 \ge 3$. Então,

$$|z^{3}| \geq |n^{3}.p^{3}m^{3}.3|$$

$$|z^{3}| > |n^{3}|$$

$$|z| > |n|$$

No entanto, inicialmente havíamos escolhido (x,y,z) como solução da equação $X^3+Y^3=Z^3$ com |z| sendo a menor escolha possível, ou seja, isso contradiz a escolha inicial.

Caso 2:
$$mdc(2a, a^2 + 3b^2) = 3$$

Neste caso, a é múltiplo de 3, então escrevemos a=3c. Como a é par, temos que c também é par. Além disso, $3 \nmid b$, já que $\operatorname{mdc}(a,b)=1$ e 3|a. Dessa forma, temos que $(3c^2+b^2)$ é ímpar (pois c é par e b é ímpar e a soma de dois números de paridades diferentes resulta em um ímpar), ou seja $2 \nmid (3c^2+b^2)$ e ainda $3 \nmid (3c^2+b^2)$ (pois $3 \nmid b$) uma vez que $\operatorname{mdc}(b,c)=1$, o que implica $18 \nmid (3c^2+b^2)$ e consequentemente $\operatorname{mdc}(18c,3c^2+b^2)=\operatorname{mdc}(c,3c^2+b^2)=1$.

$$z^{3} = 2a(a^{2} + 3b^{2}) = 2(3c)[(3c)^{2} + 3b^{2}] = 18c(3c^{2} + b^{2}).$$

De fato, pela fatoração única de inteiros, temos que 18c e $(3c^2+b^2)$ são cubos, ou seja:

$$18c = r^3$$
$$3c^2 + b^2 = s^3$$

 $\mbox{com}\ s$ ímpar e 3|ruma vez que 3 é um fator de $r^3.$ Novamente podemos utilizar o Lema 6.1 e escrever

$$s = (u2 + 3v2)$$
$$b = u(u2 - 9v2)$$
$$c = 3v(u2 - v2)$$

 $com u, v \in \mathbb{Z} e mdc(u, 3v) = 1.$

Como b é ímpar, temos que $u(u^2-9v^2)$ é ímpar e, então, u e u^2-9v^2 são ímpares. Como u é ímpar, podemos concluir que v é par. Além disso, temos que $v \neq 0$ (pois c é não nulo) e $\mathrm{mdc}(u,v)=1$ (consequência do Lema 6.1). Assim, usando o mesmo argumento do caso 1, é possível concluir que 2v, (u+v), (u-v) são relativamente primos dois a dois. Da equação

$$r^3 = 18c = 18[3v(u^2 - v^2)] = 54v(u + v)(u - v)$$

temos que

$$\left(\frac{r}{3}\right)^3 = 2v(u+v)(u-v)$$

ou seja, 2v, (u+v), (u-v) são cubos, isto é,

$$2v = n^{3}$$
$$u + v = p^{3}$$
$$u - v = -m^{3}$$

e temos que na terna (p,m,n) todos são diferentes de 0, relativamente primos entre

si dois a dois e satisfazem a equação $X^3 + Y^3 = Z^3$, pois

$$2v = 2v$$

$$(u+v) + (v-u) = 2v$$

$$p^{3} + (m^{3}) = n^{3}$$

com |n| par e |z| > |n|. De fato,

$$\begin{aligned} |z^{3}| &= |18c(3c^{2} + b^{2})| \\ |z^{3}| &= |9.2.3v(u^{2} - v^{2}).(3c^{2} + b^{2})| \\ |z^{3}| &= |27.2v(u^{2} - v^{2}).(3c^{2} + b^{2})| \\ |z^{3}| &= |3^{3}.n^{3}.(-p^{3}m^{3}).(3c^{2} + b^{2})| \\ |z^{3}| &= |3^{3}|.|n^{3}|.|(-p^{3}m^{3})|.|(3c^{2} + b^{2})| \end{aligned}$$

Como c e b são não nulos, temos que $(3c^2 + b^2) \ge 1$. Então,

$$|z^{3}| > |3^{3}|.|n^{3}|.|(-p^{3}m^{3})|$$

 $|z^{3}| > |n^{3}|$
 $|z| > |n|$

Isto novamente contradiz a escolha inicial da terna (x, y, z) solução da equação $X^3 + Y^3 = Z^3$ com z sendo a menor escolha possível.

Dessa forma, a equação
$$X^3 + Y^3 = Z^3$$
 não possui solução.

7 Conclusão

No século XVII René Descartes criou a Geometria Analítica, a qual possibilitou a fusão das áreas de Álgebra e Geometria, abrindo espaço para aplicações de Geometria em Teoria dos números e vice-versa. Pierre de Fermat, por exemplo, para se aprofundar no estudo das equações diofantinas, fez uso da Geometria Analítica. Desde então a junção entre Geometria e Aritmética tem sido amplamente usada na resolução de problemas envolvendo teoria dos números. Um exemplo

recente de problema envolvendo essa fusão, é uma generalização do Teorema 6.1 que consiste em demonstrar que :

$$x^3+y^3=z^n$$
 $x,\ y,\ z\in\mathbb{Z}/\{0\}$ não possui solução para $n\geq 3.$

Bruin provou em [1] os casos n=4, 5, Kraus fez em [9] o caso n primo com $17 \le n < 10^4$ e Dahmen em [3] demonstrou para n=5,7,11,13. O problema se encontra em aberto para o restante dos valores de n.

8 Agradecimentos

À Universidade Federal de Ouro Preto - UFOP, ao Programa de Iniciação Científica e Mestrado - PICME e ao Programa de Educação Tutorial de Matemática - PETMAT UFOP, que permitiram o desenvolvimento deste trabalho.

Referências

- [1] Nils Bruin. On powers as sums of two cubes. *Algorithmic number theory* (edited by W. Bosma), Lecture Notes in Comput. Sci. 1838, Springer, page 169–184, 2020.
- [2] Salvador da Silva Bruno. O último teorema de fermat para n = 3. Master's thesis, Universidade Federal do Estado do Rio de Janeiro, Mestrado Profissional em Matemática em Rede Nacional, Rio de Janeiro, 2014.
- [3] Sander Roland Dahmen. Classical and modular methods applied to diophantine equations. *University of Utrecht, Ph.D. thesis*, 2008.
- [4] Gilda de La Rocque e João Bosco Pitombeira. Uma equação diofantina e suas resoluções. *Revista do Professor de Matemática*, 19:39–47, 1991.
- [5] Stan Dolan. Fermat's method of descente infinie. *Mathematical Gazette*, 2011.
- [6] Fabio Brochero Martinez; et. al. *Teoria dos números: um passeio com primos e outros números familiares pelo mundo inteiro*. IMPA, Rio de Janeiro, 2016.

- [7] Rodrigo Gondim. Aritmética em retas e cônicas. pages 6–31, Paraíba (SE), 2010. V Bienal da Sociedade Brasileira de Matemática.
- [8] Abramo Hefez. Aritmética. SBM, Rio de Janeiro, 2016.
- [9] Alain Kraus. Sur l'équation $a^3 + b^3 = c^p$. Experimental Mathematics 7, 1:1–13, 1998.
- [10] Ricardo Vieira Lima. Equações diofantinas. Master's thesis, Universidade Federal de São João del-Rei, https://ufsj.edu.br/portal-repositorio/File/comat/tcc_Ricardo.pdf, 2017.
- [11] Edi Jussara Candido Lorensatti. Aritmética: um pouco de história. Caxias do Sul (RS), 2012. IX ANPED SUL.
- [12] Paulo Ribenboim. *Fermat's last theorem for amateurs*. Springer Science & Business Media, 2008.
- [13] João Evangelista Cabral dos Santos et al. Números inteiros como soma de quadrados. 2013.
- [14] Simon Lehna Singh. O Último teorema de fermat. *Rio de Janeiro: Editora Record.*, 1998.
- [15] Andrew J Wiles. Modular elliptic curves and fermat's last theorem. *Annals of Mathematics*, 141:443–551, 1995.