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Abstract
In this work we will present an extension of the repunit sequence related to repunit numbers with a negative
subscripts. Our main objective is to establish properties of this new sequence, as well as the Binet formula, the
generating functions and the classical identities. The identities of Catalan, Cassini and d’Ocagne related to a
sequence of numbers are important because they describe an elegant relationship between the elements of the
sequence.
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1. INTRODUCTION

The repunit sequence is formed by numbers, elements of the sequence, which are written in
the decimal systemas the repetition of the unit, represented by {rn}n≥1 = {1, 11, 111, . . . , rn, . . .},
the sequence A002275 in OEIS (SLOANE et al., 2024). See that, for all n ≥ 1, we have that

rn = 10 · rn−1 + 1, with r0 = 0 . (1)

Where rn denotes the n-th repunit, and for convenience we use r0 = 0. In (SANTOS; COSTA,
2023), for n ≥ 1, introduced another recurrence relation, related to the initial recurrence (1).
Making rn+1− rn, and so the repunit sequence is also determined by the homogeneous relation

rn+1 = 11rn − 10rn−1 , (2)
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with initial condition r0 = 0 and r1 = 1.
The repunit sequence, recurrence (2), is a special case of Horadam sequence, where Ho-

radam sequence is defined by

Wn+1 = pWn + qWn; (n ≥ 0)

whereW0 = a;W1 = b for all a, b, p, q ∈ R. So if we take p = 11; q = −10; a = 0; and b = 1;
then the Horadam sequence is reduced to repunit sequence. More general results found see
(CERDA, 2012; TAŞTAN; YILMAZ; ÖZKAN, 2022) .

An approach to the study of numerical sequences is through matrix representation, and in
specialized literature, we find several works that relate different types of sequences andmatrices,
of which we can mention (COSTA; SANTOS, 2022b; FALCON, 2013; KALMAN, 1982; KILIC, 2007;
KILIC; OEMUER; ULUTAŞ, 2009; KILIC; TASCI; HAUKKANEN, 2010; KILIÇ; STANICA, 2011). Specifi-
cally, a study on the repunit sequence and its matrix representation can be found in (SANTOS;
COSTA, 2024). Another approach to studying numerical sequences is to extend the sequence to
integer numbers, that is, also to negative indices, of which we can mention (DASDEMIR, 2019;
HALICI; AKYÜZ, 2016; HORADAM, 1982; MANGUEIRA et al., 2021; SOYKAN, 2021).

The repunit sequence {rn}n≥0 can be extended to negative subscripts by the following
definition.

Definition 1. Let n ≥ 1, then the negative index n-th repunit numbers is defined as

r−n = − rn
10n

.

It follows from the definition that repunit sequencewith negative index is the set of elements
given by

{r−n}n≥1 =

{
− 1

10
, − 11

102
, −111

103
, . . . ,

}
= {−0, 1; −0, 11; −0, 111, . . . , } .

The first few repunit numbers with negative subscript are given in the following Table 1,
with−8 ≤ n ≤ −1:

n -8 -7 -6 -5 -4 -3 -2 -1

rn - 0,11111111 -0,1111111 -0,111111 -0,11111 -0,1111 -0,111 -0,11 -0,1

TABLE 1.
Repunit numbers at negative index

Observation of Table 1 gives rise to,

11

10
r−2 −

1

10
r−1 = −11

10
· 11

100
+

1

10
· 1

10
=

121

1000
+

1

100
= − 111

1000
= −0, 111 = r−3 ,

as well as
11

10
r−3 −

1

10
r−2 = −11

10
· 111

1000
+

1

10
· 11

100
= − 1221

10000
+

11

1000
= − 1111

10000
= −0, 1111 = r−4 .

The following results demonstrates this fact.
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Proposition 2. The repunit sequence with negative index satisfies the recurrence relation

r−(n+1) =
11

10
r−n −

1

10
r−(n−1) with r−1 = −0, 1 and r−2 = −0, 11 ; (3)

for n = 1, 2, 3, . . . .

Proof. See that

11

10
r−n −

1

10
r−(n−1) = −11

10
· rn
10n

+
1

10
· rn−1

10n−1

=
−11rn + 10rn−1

10n+1

= − rn+1

10n+1
.

Therefore, the recurrence equation (3) is given by a recurrence relation of order 2, as well
as recurrence equation (2). So, recurrence (2) holds for all integer n.

Here, we present and study a generalization of the terms of the repunit sequence to negative
indices, describing a new numerical sequence denoted by r−n. The Proposition 6, in Section 2,
provides the Binet Formula for negative indices, characterizing the terms of r−n. In Section 3,
we demonstrate the classical Catalan, Cassini, and D’Ocagne identities for r−n. In Section 4,
we present results on partial sums of terms of the repunit sequence with n integers. Finally, in
Section 5, taking the quotients (divisions) of each term by its predecessor, we determine the
limit of this numerical sequence whose general term is rn+1/rn, that is, it is a sequence limited.

2. LINEAR RECURRENCE AND BINET’S FORMULA

See that Equation (3) is a linear difference equation of order 2. Therefore, to determine
a solution to the difference equation we will present the following auxiliary results (Lemmas),
whose demonstrations can be consulted in (CARVALHO; MORGADO, 2015; ROSEN, 2007) .

Lemma 3. The linear difference equation, given by

xn+2 + pxn+1 + qxn = 0

with x1 = a1, x2 = a2, and a1, a2 ∈ R and n ∈ N, has a single solution.

Lemma 4. If the equation r2 + pr + q = 0 has distinct roots r1 and r2, the sequences an =
c1(r1)

n + c2(r2)
n, where n ∈ N, and c1, c2 ∈ R, are solutions of

xn+2 + pxn+1 + qxn = 0, para n ∈ N, n ≥ 1 .

In the decimal system, according to (BEILER, 1964; COSTA; SANTOS, 2022a; RIBENBOIM,
2004; TARASOV, 2007) the equation

rn =
10n − 1

9
(4)

3
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presents Binet’s formula for repunit numbers.
See that the recurrence r−(n+1) =

11

10
r−n −

1

10
r−(n−1) has characteristic equation given by

x2 − 11

10
x+

1

10
= 0 , (5)

whose roots are x1 =
1

10
and x2 = 1. Let’s determine the real constants c1 and c2, considering

that r−1 = 0, 1 and r−2 = 0, 11, and we obtain the linear system,
−0, 1 = c1

( 1

10

)
+ c2

−0, 11 = c1

( 1

100

)
+ c2

Solving the system we find c1 =
−1

9
and c2 =

1

9
. Then, under the previous discussion, we can

provide the Binet formula, as follows.

Proposition 5 (Binet’s formula). For all n ∈ N, we have

r−n = −10n − 1

9 · 10n
. (6)

Proof. We have that a general solution to Equation (5) is of the form r−n = c1

(
1

10

)n

+ c2(1)
n.

Then, we obtain

r−n = c1

(
1

10

)n

+ c2(1)
n

=
−1

9

(
1

10

)n

+
1

9
(1)n

= −10n − 1

9 · 10n
.

The function, according (SPREAFICO; CRAVEIRO; RACHIDI, 2022),

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .+ anx

n + . . . (7)

is known as the generating function for the sequence {a0, a1, a2, . . .}. Generating functions
provide an interesting tool in solving second-order linear recurrences, as expressed in the
Horadan and Lucas sequences. Therefore, our next result presents a generating function for the
negative index repunits.

Proposition 6. The generating function for the repunits r−n, denoted by gr−n(x), is:

gr−n(x) =
x

10− 11x+ 1x2
.

4
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Proof. According to Equation (7), the generating function for the repunit sequence is gr−n(x) =
∞∑
n=0

r−nx
n, then using the equations−11x

10
gr−n and

1x2

10
gr−n, we obtain

gr−n(x) =r0 + r−1x+ r−2x
2 + . . .+ r−nx

n + . . .

−11x

10
gr−n(x) =− 11x

10
r0 −

11x

10
r−1x− 11x

10
r−2x

2 − . . .− 11x

10
r−nx

n − . . .

1x2

10
gr−n(x) =

1x2

10
r0 +

1x2

10
r−1x+

1x2

10
r−2x

2 + . . .+
1x2

10
r−nx

n + . . .

When we add to both sides, we have:(
1− 11x

10
+

1

10
x2

)
gr−n(x)

=r0 + (r−1 −
11

10
r0)x+ (r−2 −

11

10
r−1 +

1

10
r0)x

2+

+ (r−3 −
11

10
r−2 +

1

10
r−1)x

3 + . . .+ (r−n −
11

10
r−n+1 +

1

10
r−n+2)x

n . . .

(5)
=

1

10
x+ 0 · x2 + 0 · x3 + . . .+ 0 · xn + . . .

Where the result follows without much effort.

According (SPREAFICO; CRAVEIRO; RACHIDI, 2022) the exponential generating function
er−n(x) of a sequence {an}n≥0 is a power series of the form

ean = a0 + a1x+
a2x

2

2!
+ ...+

anx
n

n!
+ . . . =

∞∑
n=0

anx
n

n!
.

In the next result we consider the Binet equation (6), and obtain the exponential generating
function for the repunit sequence {r−n}n≥0.

Theorem 7. For all n ≥ 0 the exponential generating function for the repunit sequence {r−n}n≥0

is

er−n =
e

t
10 − et

9
.

Proof. The exponential generating function for the repunit numbers is
∞∑
n=0

r−nt
n

n!
. Using Equa-

tion (6), we obtain that
∞∑
n=0

r−nt
n

n!
= −

∞∑
n=0

10n − 1

9 · 10n
· t

n

n!

=
1

9

(
∞∑
n=0

(
t
10

)n
n!

−
∞∑
n=0

tn

n!

)
=

1

9

(
e

t
10 − et

)
.
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3. SOME IDENTITIES

In the literature for a numerical sequence Un, the identities U2
m − Um+nUm−n = X ,

U2
m − Um+1Um−1 = Y and UmUn+1 − Um+1Un = Z, are known, respectively, as the Catalan

Identity, the Cassini Identity and the d’Ocagne Identity, whereX , Y and Z are integers. Santos
and Costa (SANTOS; COSTA, 2023) in turn, exhibit the identities for the positive indices of the
repunit sequence.

Nowwe present too for negative indices of some classical identities of the repunit sequence.
So, in this section, we provide the Catalan, Cassini, and d’Ocagne identities related to the negative
sequence repunit.

Proposition 8. [Catalan’s Identity] Letm, n be any natural. Form ≥ n we have

(r−m)
2 − r−(m−n)r−(m+n) =

(rn)
2

10(m−n)
.

Proof. By Equation (6), we have that

(r−m)
2 − r−(m−n)r−(m+n) =

(
−10m − 1

9 · 10m

)2

−
(
−10m−n − 1

9 · 10m−n

)(
−10m+n − 1

9 · 10m+n

)
=
102m − 2 · 10m + 1− 102m + 10m−n + 10m+n − 1

81 · 102m

=
10(m−n) + 10(m+n) − 2 · 10m

81 · 102m

=
10m−n(102n − 2 · 10n + 1)

81 · 102m

=
10m−n

102m

(
10n − 1

9

)2

,

the result is derived from the combined application of the properties of powers and the Propo-
sition 6.

Setting n = 1 in Proposition 8, we obtain the following identity for negative indices:

Proposition 9 (Cassini’s Identity). For allm ≥ 1, we have (r−m)
2− r−(m−1)r−(m+1) = 10−(m−1).

Similar to Proposition 8 we have:

Proposition 10 (D’ocagne’s Identity). Letm, n be any natural. Form ≥ n we have

r−mr−(n+1) − r−(m+1)r−n =
rm−n

10m+1
.

6
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Proof. Using a Equation (6) again we obtain that

r−m · r−(n+1) − r−(m+1) · r−n

=

(
−10m − 1

9 · 10m

)
·
(
−10n+1 − 1

9 · 10n+1

)
−
(
−10m+1 − 1

9 · 10m+1

)(
−10n − 1

9 · 10n

)
=

(
10m+n+1 − 10m − 10n+1 + 1

92 · 10m+n+1

)
−
(
10m+n+1 + 10m+1 − 10n + 1

92 · 10m+n+1

)
=

(
−10m − 10n+1 + 10m+1 + 10n

92 · 10m+n+1

)
=

10m+1 − 10m + 10n − 10n+1

92 · 10m+n+1

=
10m(10− 1)− 10n(10− 1)

92 · 10m+n+1

=
9(10m − 10n)

92 · 10m+n+1

=
10m − 10n

9 · 10m+n+1
.

Sincem ≥ n, we have

r−m · r−(n+1) − r−(m+1) · r−n =
10n(10m−n − 1)

9 · 10m+n+1

=
10m−n − 1

9 · 10m+1
,

and we have the validity of the result.

4. SUM FORMULAS

Considering the sequence of partial sums Sn = r1+r2+ · · ·+rn, for n ≥ 1, where {rn}n≥1

is the repunit sequence. We have that:

Proposition 11. Let (rn)n≥1 be the repunit sequence, then

(a)
n∑

k=0

rk =
10rn − n

9
,

(b)
n∑

k=0

r2k =
102rn − nr2

99
,

(c)
n∑

k=0

r2k+1 =
r2n+3 − (n+ 1)r2

99
.

Proof. (a) Fromof Proposition 9 in (SANTOS; COSTA, 2023) is valid that
n∑

k=0

rk =
10(10n − 1)− 9n

81
.

So
n∑

k=0

rk = 10
10n − 1

9 · 9
− 9n

9 · 9
=

10rn − n

9
.

7



RMAT V. 1, N. 1 | 202x

(b) See that S2n = r0 + r2 + · · ·+ rn . Now, it follows from Equation (4) that

S2n =
102 − 1

9
+

104 − 1

9
+ · · ·+ 102n − 1

9

=
(102 + 104 + · · ·+ 102n)− n

9

=
102(102n−1)

99
− n

9
=

102(102n − 1)− 99n

891

=
102rn − 11n

99
.

(c) In a similar way

S2n+1 = r1 + r3 + · · ·+ r2n+1

=
10− 1

9
+

103 − 1

9
+ · · ·+ 102n+1 − 1

9

=
(10 + 103 + · · ·+ 102n+1)− (n+ 1)

9

=
10(102n+2−1)

99
− (n+ 1)

9
=

(102n+3 − 1)− 99n− 108

891

=
r2n+3 − 11n− 12

99
.

Now, let S−n be the sequence formed by partial sums S−n = r−1 + r−2 + r−3 + . . .+ r−n,
with n ≥ 1, where {r−n}n≥1 represents the terms of negative order in the repunit sequence.

Proposition 12. Let {r−n}n≥1 be the repunit negative sequence, then

(a)
n∑

k=0

r−k = −n− r−n

9
,

(b)
n∑

k=0

r−2k = −nr2 − r−2n

99
,

(c)
n∑

2k=0

r−(2k+1) = −
(n+ 1)r2 − r−(2n+1)

99
.

Proof. (a) We have that
n∑

k=0

r−k = r−1 + r−2 + r−3 + . . .+ r−n .

8
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Now, it follows from Equation 6 that

S−n = r−1 + r−2 + r−3 + . . .+ r−n

= −
(
10− 1

10 · 9
+

102 − 1

102 · 9
+

103 − 1

103 · 9
+ . . .+

10n − 1

10n · 9

)
= −10n−1(10− 1) + 10n−2(102 − 1) + . . .+ 10(10n−1 − 1) + 10n − 1

10n · 9

= −10n · n− (10n−1 + 10n−2 + 10n−3 + . . .+ 10 + 1)

10n · 9

=
−n10n + 10n−1

10−1

10n · 9
=

−9n10n + (10n − 1)

10n · 92

= − 9n10n

10n · 92
+

10n − 1

10n · 92
= −n

9
+

r−n

9
,

(b) In a similar way

S−2k = r−2 + . . .+ r−2n

= −
(
102 − 1

102 · 9
+

104 − 1

104 · 9
+

106 − 1

106 · 9
+ . . .+

102n − 1

102n · 9

)
= −102n−2(102 − 1)− 102n−4(104 − 1) + . . .+ 102n − 1

102n · 9

=
−102n · n+ (102n−2 + 102n−4 + 102n−6 + . . .+ 102 + 1)

102n · 9

=
−102n · n+ 102n−1

99

102n · 9
=

−102n · n
102n · 9

+
102n − 1

102n · 9 · 99

= −n

9
+

102n − 1

102n · 891
= −n · r2 − r−2n

99
.

(c) To the same effect

S−(2k+1) = r−1 + r−3 + r−5 + . . .+ r−(2n+1)

= −
(
10− 1

10 · 9
+

103 − 1

103 · 9
+

105 − 1

105 · 9
+ . . .+

102n+1 − 1

102n+1 · 9

)
= −102n(10− 1) + 102n−2(103 − 1) + 102n−4(105 − 1) + . . .+ 102n+1 − 1

102n+1 · 9

= −102n+1(n+ 1)− (102n + 102n−2 + . . .+ 102 + 1)

102n+1 · 9

= −
102n+1(n+ 1)− 102n+1−1

99

102n+1 · 9

= −n+ 1

9
+

102n+1 − 1

102n+1 · 9 · 99

= −
(n+ 1)r2 − r−(2n+1)

99
.

and we have the result.

The following example illustrates the result demonstrated in Proposition 12.

9
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Example 13. Note that for n = 4, the sum of the 4 − th of {r−n}n≥1 is given by S−4 =

r−1 + r−2 + r−3 + r−4 = −4− 0, 1111

9
= −0, 4321, while if n = 8, we obtain S−8 =

r−1 + r−2 + r−3 + r−4 + r−5 + r−6 + r−7 + r−8 = −8− 0, 11111111

9
= −0, 8764321.

5. LIMIT

Once more, using the Binet formulas (4) and (6) we obtain another property of the repunit
sequences {rn}n∈Z which is stated in the following proposition.

Proposition 14. If rn are the n-th terms of repunit sequence, , then

lim
n→∞

rn+1

rn
= 10 , (8)

and
lim

n→−∞

r−(n+1)

r−n

=
1

10
. (9)

Proof. We have that

lim
n→∞

rn+1

rn
= lim

n→∞

10n+1 − 1

9
· 9

10n − 1
= lim

n→∞

10− 1

10n

1− 1

10n

= 10 ,

since lim
n→∞

1

10n
= 0. And

lim
n→−∞

r−(n+1)

r−n

= lim
n→−∞

10n+1 − 1

9 · 10n+1
· 9 · 10n

10n − 1
= lim

n→∞

10n+1 − 1

10n+1 − 10
=

1

10
,

since lim
n→−∞

10n = 0.

In what follows, we can easily show the next result using basic tools of calculus of limits, (8)
and (9).

Corollary 15. If rn are the n-th terms of repunit sequence, , then

lim
n→∞

rn
rn+1

=
1

10
,

and
lim

n→−∞

r−n

r−(n+1)

= 10 .

10
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6. CONSIDERATIONS

In this work we discuss some results about the repunit sequence with negative indices.
We present a generalization of the repunit sequence, a version of Binet’s Formula for negative
indices, and the generating function for r−n, thus establishing the continuity of the function
over the entire set of integers. In addition, we characterize the classical identities of recurrent
sequences for the entire repunit sequence: the Catalan, Cassini, and D’Ocagne Identities. Finally,
we present part of our studies involving the terms of r−n and some partial sums of terms.
With this work, we hope to encourage further studies on this class of numbers, providing new
approaches to the repunit sequence and its various forms of representation.
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