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Abstract
This work introduces two new sequences: the gaussian repunit numbers and the quaternion repunit numbers. We
establish some properties of these sequences, as well as, recurrence relations, the Binet formula, and Catalan’s,
Cassini’s, and d’Ocganes identities.
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Resumo
Este trabalho introduz duas novas sequências: os números repunidades gaussianos e os números repunidades
quaternions. Estabelecemos algumas propriedades dessas sequências, bem como relações de recorrência, a fórmula
de Binet e as identidades de Catalan, Cassini e d’Ocganes.
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Resumen
Este trabajo introduce dos nuevas secuencias: números de repunity gaussianos y números de repunity de cuaterni-
ones. Establecemos algunas propiedades de estas secuencias, así como las relaciones de recurrencia, la fórmula de
Binet y las identidades de Catalan, Cassini y d’Ocganes.
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INTRODUCTION

Recursive relations define several families of integers that are studied in the literature. These
sequences of numbers are at the origin of many interesting identities. One of these integer
sequences is the repunit sequence {Rn}n≥0 formed by integers numbers which are written in
the decimal system as the repetition of the unit, and represented by the set {0, 1, 11, 111, . . .},
sequence A002275 in the OEIS (SLOANE, 2024). The repunit sequence was introduced in (Yates,
1982), where the author was interested in answering the question: “Consider an integer N
with n digits where each digit is a unit. For which values of n is N prime? "The connection
with the repunit sequence, prime numbers, and the generalization of the repunit sequence
was studied in (Beiler, 1964; Jaroma, 2007; Yates, 1982; Snyder, 1982). In (Snyder, 1982) was
introduced the extended notion of a repunit to one in which for some integer b > 1, namely,

Rn(b) =
n−1∑
i=0

bi =
bn − 1

b− 1
. The author gives a necessary and sufficient condition to Rn(b) have

a prime divisor congruent to 1 (mod n).
In (Jaroma, 2007) the author reproves the same result by using the theory of the Lucas

sequences. For these sequences, the author defined the following recurrence sequence of
integers

Un+2 = PUn+1 −QUn ,∀ n ≥ 1, (1)

where P andQ are any pair of relatively prime integers and U0 = 0 and U1 = 1. Similarly, in
the same article, it is defined the companion Lucas sequence given by the following recurrence
sequence of integers

Vn+2 = PVn+1 −QVn ,∀ n ≥ 1, (2)

where P andQ are any pair of relatively prime integers and U0 = 2 and U1 = P. Observe that,
the Lucas sequence considered in (Jaroma, 2007) is not the same as the classical Lucas sequence
given by the sequence A000032 in OEIS (SLOANE, 2024), but if we consider P = 1 andQ = −1
in (2) we have that the classical Lucas numbers are a particular companion Lucas sequence (see,
for instance, (Koshy, 2019; Vajda, 2008)).

Consider P = 11 and Q = 10 in Equation (1), then for all n ≥ 1 we have the following
recurrence

Rn+1 = 11Rn − 10Rn−1, (3)

with initial condition R0 = 0 and R1 = 1, which is nothing more than the repunit sequence
of numbers. Since this sequence is given by a recurrence relation of order 2, we can provide
the study of these numbers using the theory of recurrence sequences. In (Tarasov, 2007), the
repunit numbers have been studied and interesting properties are proved. Recently, in (Santos;
Costa, 2023), the authors introduced the recurrence (3) and explored the repunit sequence
from this perspective. It is established some properties, such as the sum of n terms, as well as,
several classical identities such as Catalan’s and Cassini’s identities.

In this work, we will generalize the repunit sequence concerned with the gaussian repunit
and quaternion repunit numbers. Our main objective is to show the complexification process of
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the repunit sequence. In addition, we will establish properties of these new sequences, as well
as, the Binet formula, the generating function, and several identities.

Horadam in (Horadam, 1963) introduced the concept of the complex Fibonacci numbers and
the Fibonacci quaternion numbers, and established some quite general identities concerning
them. From this work, many other classical sequences and generalizations were introduced in
the complex, bicomplex, quaternion, and hybrid version, (see, for instance, (Diskaya; Menken,
2023; Harman, 1981; Horadam, 1963; Horadam, 1993; Iyer, 1969; Pethe; Horadam, 1986; Smith,
2004; Spreafico; Catarino; Vasco, 2023; Tasci, 2018; Vieira; Alves; Catarino, 2022)).

This complexification process is an extension of the integer sequence into a complex,
quaternion, or hybrid set. It is important to note that, many of the results and properties
remain in each set of numbers. It is possible to study the classical identities in the complex or
quaternion set such as Cassini’s, Catalan’s, and d’Ocgnes identities, as well as, the Binet formula
and generating function.

This paper is organized as follows. In Section 2, we discuss some preliminary results as
the complex set, the quaternion set, and the definition of repunit numbers. In addition, we
present the generating function for the repunit numbers that will be used in the next sections.
In Sections 2 and 3 we present the definition of gaussian and quaternion repunit sequence,
respectively, also properties, recurrence relation, generating function, sum formula, as well
as Catalan’s, Cassin’s, and d’Ocgane’s identities. In Section 3, for quaternions, it is interesting
to note that, due to the non-commutativity of multiplication, there are two versions for each
identity. Finally, some conclusions are stated.

1. BACKGROUND AND PRELIMINARIES RESULTS

Consider the field of complex numbers, denoted by (C,+, ·). The set of complex numbers
is defined as C = {a+ bi | a, b ∈ R and i2 = −1}, where i is complex unit. We know that
(C,+) and (C, ·) are abelian groups, and then, the conjugate of a complex number x = a+ bi
is defined by x = a− bi. A gaussian number is a complex number z = a+ bi, where a and b are
integers, see (Felzenszwalb, 1979; Halici, 2012; Smith, 2004). For all a, b, c, d integer numbers,
the following arithmetic operations in the gaussian set holds:

(a+ bi)2 = (a2 − b2) + 2abi ,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i .

The set of a quaternion (hamiltonian) numbers, denoted byH, is defined as

H = {a+ bi+ cj + dk | a, b, c, d ∈ R with i2 = j2 = k2 = ijk = −1}.

According to (Conway; Smith, 2003; Felzenszwalb, 1979; Messenger, 2014; Li et al., 2009;
Smith, 2004), (H,+, ·) form a vector space with a base 1, i, j, k, which is composed of unit
1 and its imaginary units i, j and k. The addition of two quaternion numbers is defined by
summing their components. So, the addition operation in the quaternion numbers is both
commutative and associative. Zero is the null element. Concerning the addition operation, the
symmetric element of x is −x, which is defined as having all the components of x changed
in their signals. This implies that, (H,+) is an abelian group. The conjugate of a quaternion
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number x = a+ bi+ cj + dk is defined by x = a− bi− cj − dk. When the real component
is equal to zero, the quaternion is called pure. Quaternion multiplication follows the usual
algebraic multiplication rules from the definition of quaternion numbers, the multiplication
table of the quaternion units is given by Table 1:

TABELA 1.
The multiplication table for quaternion units

• 1 i j k

1 1 i j k

i i −1 k -j

j j −k −1 i

k k j −i −1

In (Santos; Costa, 2023) the repunit sequence {Rn}n≥0 is recursively defined in base 10 by
recurrence (3), namely,

R0 = 0 , R1 = 1 and Rn+1 = 11Rn − 10Rn−1 ,

where Rn denotes the n-th repunit number. The explicit formula for the n−th repunit number
is given by

Rn =
10n − 1

9
, (4)

(see (Santos; Costa, 2023; Santos; Costa, 2024) and references therein). In addition, our next
result presents a generating function for the repunit numbers.

Proposition 1. The generating function for the repunit numbers {Rn}n≥0 denoted byGRn(x), is
given by

GRn(x) =
x

1− 11x+ 10x2
. (5)

Demonstração. LetGRn(x) =
∞∑
n=0

Rnx
n be the generating function of repunit numbers. Then,

by expanding equationsGRn(x),−11xGRn(x) and 10x2GRn(x), we obtain

GRn(x) =R0 +R1x+R2x
2 + . . .+Rnx

n + . . .

−11xGRn(x) =− 11R0x− 11R1x
2 − 11R2x

3 − . . .− 11Rnx
n+1 + . . .

10x2GRn(x) =10R0x
2 + 10R1x

3 + 10R2x
4 + . . .+ 10Rnx

n+2 + . . . .

When we add to both sides, we have

(1− 11x+ 10x2)GRn(x) =R0 + (R1 − 11R0)x+ (R2 − 11R1 + 10R0)x
2

+ (R3 − 11R2 + 10R1)x
3 + . . .+ (Rn − 11Rn−1

+ 10Rn+2)x
n + . . .

(3)
=x+ 0 · x2 + 0 · x3 + . . .+ 0 · xn + . . . ,

which implies the result.
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2. GAUSSIAN REPUNIT NUMBERS

In this section, we will introduce the gaussian repunit numbers and provide some properties
of these numbers. In addition, the Binet formula is provided, as well as several identities are
established. Next, consider the definition of gaussian repunit numbers.

Definition 2. For all integers n ≥ 0, the n-th gaussian repunit number is defined by

CRn = Rn +Rn+1i, (6)

where Rn is the n-th repunit number given by (3), i2 = −1 and with initial conditions are
CR0 = i and CR1 = 1 + 11i.

As a consequence of Definition 2 and the recurrence relation (3) we have the following
result.

Proposition 3. The sequence {CRn}n≥0 of the gaussian repunit numbers satisfies the following
second-order recursive relation:

CRn+2 = 11CRn+1 − 10CRn , (7)

with initial conditions CR0 = i and CR1 = 1 + 11i.

The recurrence CRn+2 = 11CRn+1 − 10CRn has characteristic equation given by

r2 − 11r + 10 = 0 , (8)

whose roots are r1 = 10 and r2 = 1.
Let’s determine the complex constants c1 and c2, considering that CR0 = i and CR1 =

1 + 11i, and we obtain the system,{
i = c1 + c2

1 + 11i = 10c1 + c2 .

Solving the system we find c1 =
1 + 10i

9
and c2 = −1 + i

9
. Then, under the previous discussion,

we can provide the Binet formula, as follows.

Proposition 4 (Binet’s formula). For all n ∈ N, we have

CRn =
10n − 1

9
+

10n+1 − 1

9
i . (9)

Demonstração. We have that a general solution to Equation (7) is of the form CRn = c1(10)
n +

c2(1)
n. Then, we obtain

CRn = c1(10)
n + c2(1)

n

=
1 + 10i

9
(10)n − 1 + i

9
(1)n

=
10n − 1

9
+

10n+1 − 1

9
i .
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Now, we consider the sequence of partial sums CSn = CR0 + CR1 + CR2 + · · ·+ CRn,
for n ≥ 0, where {CRn}n≥0 is the gaussian repunit sequence.

Proposition 5. Let {CRn}n≥0 be the gaussian repunit sequence, then

CSn =
10n+1 − 10− 9n

81
+

10n+2 − 19− 9n

81
i .

Demonstração. We have that

CSn = CR0 + CR1 + · · ·+ CRn

= (R0 +R1 + · · ·+Rn) + (R1 +R2 + · · ·+Rn+1)i

= (R1 + · · ·+Rn) + (R1 +R2 + · · ·+Rn+1)i .

It is follows from Proposition 9 in (Santos; Costa, 2023) that

R1 +R2 + · · ·+Rn = Sn =
10(10n − 1)− 9n

81
.

Then, we have

CSn =
10(10n − 1)− 9n

81
+

10(10n+1 − 1)− 9(n+ 1)

81
i .

Now, we will establish the classical Catalan’s identity.

Proposition 6 (Catalan’s Identity). Letm,n be any natural. Form ≥ n we have

(CRm)
2 − CRm−nCRm+n = −9 · 10m−n · (Rn)

2 +
(
10m−n(10n + 1)Rn

)
i .

Demonstração. It is follows from Equation (6)

(CRm)
2 − CRm−nCRm+n

=(Rm +Rm+1i)
2 − (Rm−n +R(m−n)+1i)(Rm+n +R(m+n)+1i)

=
(
(R2

m −R2
m+1) + 2RmRm+1i

)
−

(
(Rm−nRm+n −R(m−n)+1R(m+n)+1) + (Rm−nR(m+n)+1 +R(m−n)+1Rm+n)i)

)
=(R2

m −Rm−nRm+n)− (R2
m+1 −R(m+1)−nR(m+1)+n)

+ (2RmRm+1 −Rm−nR(m+n)+1 −R(m−n)+1Rm+n)i .

In real component, by applying Proposition 6 in (Santos; Costa, 2023), we have

(R2
m −Rm−nRm+n)− (R2

m+1 −R(m+1)−nR(m+1)+n)

= 10m−n · (Rn)
2 − 10(m+1)−n · (Rn)

2

= −9 · 10m−n · (Rn)
2 . (10)

6
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Now, by replacing Binet formula, Equation (4), in complex component, we obtain that

2RmRm+1 −Rm−nR(m+n)+1 −R(m−n)+1Rm+n

=2

(
10m − 1

9

)(
10m+1 − 1

9

)
−
(
10m−n − 1

9

)(
10(m+n)+1 − 1

9

)
−

(
10(m−n)+1 − 1

9

)(
10m+n − 1

9

)
=
10(m+n)+1 + 10m+n + 10(m−n)+1 + 10m−n − 2 · 10m+1 − 2 · 10m

81

=
10m+n + 10m−n − 2 · 10m

9
=

10m(10n − 1)

9
+

10m−n(10n − 1)

9
=10m−n(10n + 1)Rn . (11)

By adding Equations (10) and (11) we have the result.

For n = 1, the Cassini identity below follows directly from Proposition 6.

Corollary 7. [Cassini’s Identity] For allm ≥ 1, we have

(CRm)
2 − CRm−1CRm+1 = −9 · 10m−1 + 11 · 10m−1i .

Similar to Proposition 6, we can obtain the d’Ocgane’s identity, as follows.

Proposition 8 (d’Ocagne’s Identity). Letm,n be any natural. Form ≥ n we have

CRmCRn+1 − CRm+1CRn = −9 · 10nRm−n − 9 · 10n+1Rm−ni .

Demonstração. Using Equation (6) we obtain that

CRmCRn+1 − CRm+1CRn

=(Rm +Rm+1i)(Rn+1 +Rn+2i)− (Rm+1 +Rm+2i)(Rn +Rn+1i)

= ((RmRn+1 −Rm+1Rn+2) + (RmRn+2 +Rm+1Rn+1)i)

− ((Rm+1Rn −Rm+2Rn+1) + (Rm+1Rn+1 +Rm+2Rn)i)

= ((RmRn+1 −Rm+1Rn)− (Rm+1Rn+2 −Rm+1Rn+1)) (12)
+ ((RmRn+2 −Rm+1Rn+1)− (Rm+1Rn+2 −Rm+2Rn+1)) i (13)

By applying Proposition 5 in (Santos; Costa, 2023) in Equation (12), we have

(RmRn+1 −Rm+1Rn)− (Rm+1Rn+2 −Rm+1Rn+1)

=10nRm−n − 10n+1Rm+1−(n+1)

=− 9 · 10nRm−n ; (14)

Similarly, by direct application of Proposition 5 in (Santos; Costa, 2023) in Equation 13 we obtain

(RmRn+2 −Rm+1Rn+1)− (Rm+1Rn+2 −Rm+2Rn+1)

=10n+1Rm−(n+1) − 10n+1Rm+1−(n+1)

= −9 · 10n+1Rm−n . (15)

Thus, combining Equations (14) and (15), the result is verified.

7
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Next, we will present the generating function for the gaussian repunit sequence.

Proposition 9. The generating function for the gaussian repunit sequence {CRn}n≥0, denote
byGCRn(x), is

GCRn(x) =
x

1− 11x+ 10x2
+

1

1− 11x+ 10x2
i .

Demonstração. LetGCRn(x) =
∞∑
n=0

CRnx
n be the generating function for the gaussian repunit

sequence. Combining the expressions−11xGCRn(x) and 10x2GCRn(x), we have

GCRn =
CR0 + (CR1 − 11CR0)x

1− 11x+ 10x2

=
i+ (1 + 11i− 11i)

1− 11x+ 10x2

=
x

1− 11x+ 10x2
+

1

1− 11x+ 10x2
i ,

which verifies the result.

3. QUATERNION REPUNIT NUMBERS

Similarly to the previous section, now, we will present the quaternion repunit numbers and
provide some properties, as well as, a sum formula, the Catalan, the Cassini, and d’Ocgane’s
identities.

Consider the following definition of the quaternion repunit sequence.

Definition 10. For all integers n ≥ 0, the set of quaternion repunit numbers is denoted by
{HRn}n≥0 and defined by

HRn = Rn +Rn+1i+Rn+2j +Rn+3k , (16)

where Rn is the n-th repunit number, with initial conditions HR0 = i + 11j + 111k and
HR1 = 1 + 11i+ 111j + 1111k.

The following proposition establishes the Horadam recurrence relation for the quaternion
repunit numbers.

Proposition 11. For all n ≥ 0, the quaternion repunit sequence {HRn}n≥0 satisfy the recurrence
relation

HRn+2 = 11HRn+1 − 10HRn (17)

Demonstração. It follows from Equation (16)

11HRn+1 − 10HRn

=11(Rn+1 +Rn+2i+Rn+3j +Rn+4k)− 10(Rn +Rn+1i+Rn+2j +Rn+3k)

=(11Rn+1 − 10Rn) + (11Rn+2 − 10Rn+1)i+ (11Rn+3 − 10Rn+2)j

+ (11Rn+4 − 10Rn+3)k

=Rn+2 +Rn+3i+Rn+4j +Rn+5k

=HRn+2 .

8
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The next result provides the Binet formula for quaternions repunit numbers.

Proposition 12. [Binet’s Formula] For all n ∈ N, we have

HRn =
10n − 1

9
+

10n+1 − 1

9
i+

10n+2 − 1

9
j +

10n+3 − 1

9
k (18)

Demonstração. We have that a general solution to (17) is in the formHRn = c1(10)
n + c2(1)

n.
Let’s determine the quartenions constants c1 and c2, consideringHR0 = i+ 11j + 111k and
HR1 = 1 + 11i+ 111j + 1111k. Thus, we obtain the linear system{

i+ 11j + 111k = c1 + c2

1 + 11i+ 111j + 1111k = 10c1 + c2 .

Solving the linear systemwefind c1 =
1 + 10i+ 100j + 1000k

9
and c2 = −1 + 1i+ 1j + 1k

9
.

Therefore, the particular solution is given by

HRn =
(1 + 10i+ 100j + 1000k)10n − (1 + i+ j + k)

9
.

The next result establishes formula for the sum of the first n terms o HRn, proceeding
similarly to what was done with complex one. Consider the sequence of partial sums

HSn = HR0 +HR1 +HR2 +HR3 + . . .+HRn ,

then we have the following result.

Proposition 13. Let (HRn)n≥0 be the quaternion repunit sequence, then

HSn =
10n+1 − 10− 9n

81
+

10n+2 − 19− 9n

81
i+

10n+3 − 109− 9n

81
j+

10n+4 − 1009− 9n

81
k .

Demonstração. We have that

HSn =HR0 +HR1 +HR2 +HR3 + . . .+HRn

=(R1 +R2 + . . .+Rn) + (R1 +R2 + . . .+Rn+1)i

+ (R2 +R3 + . . .+Rn+2)j + (R3 +R4 + . . .+Rn+3)k

=(R1 +R2 + . . .+Rn) + (R1 +R2 + . . .+Rn+1)i

+ (R1 +R2 +R3 + . . .+Rn+2)j

+ (R1 +R2 +R3 +R4 + . . .+Rn+3)k − (j + 12k)

From Proposition 9 in (Santos; Costa, 2023) it is follows that

HSn =
10n+1 − 10− 9n

81
+

10n+2 − 19− 9n

81
i

+
10n+3 − 28− 9n

81
j +

10n+4 − 37− 9n

81
k − (j + 12k) .

9
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The lemma below is an auxiliary result that plays an important role in Catalan’s identity.

Lemma 14. For all a, b, c, d ∈ R and A = 1 + i+ j + k ∈ Q then:

(1)(a+ bi+ cj + dk)A

=(a− b− c− d) + (a+ b+ c− d)i+ (a− b+ c+ d)j + (a+ b− c+ d)k . (19)
(2) A(a+ bi+ cj + dk)

=(a− b− c− d) + (a+ b− c+ d)i+ (a+ b+ c− d)j + (a− b+ c+ d)k . (20)
(3) A2 = −2 + 2i+ 2j + 2k . (21)

As a consequence of Lemma (14) we have

Lemma 15. For A = 1 + i+ j + k and B = 1 + 10i+ 100j + 1000k ∈ Q then:

(1) BA = −1109− 889i+ 1091j + 911k .

(2) AB = −1109 + 911i− 889j + 1091k .

Demonstração. (1) Indeed, by Lemma (14), we have that

BA =(1− 10− 100− 1000) + (1 + 10 + 100− 1000)i+ (1− 10 + 100 + 1000)j

+ (1 + 10− 100 + 1000)k

=− 1109− 889i+ 1091j + 911k .

(2) Once again, by Lemma (14), we have that

AB =(1− 10− 100− 1000) + (1 + 10− 100− 1000)i+ (1 + 10 + 100− 1000)j

+ (1− 10 + 100 + 1000)k

=− 1109 + 911i− 889j + 1091k .

Now, we present the classical identities associated with the quaternion repunit sequence.
Recall that the multiplication is not commutative in quaternion sets, then for each identity,
we will have two versions, that we call the first and second identities. We begin with the first
Catalan identity.

Proposition 16. [First Catalan’s Identity] For allm, n ∈ N. Ifm ≥ n then

HR2
m −HRm−nHRm+n =

10m−n

9
Rn[

−1109Rn +

(
911 · 10n + 889

9

)
i−

(
889 · 10n + 1091

9

)
j +

(
1091 · 10n + 911

9

)
k

]
.

Demonstração. Note that, by Proposition 12, it follows that

HRm =
(1 + 10i+ 100j + 1000k)10m − (1 + i+ j + k)

9
=

B10m − A

9
,

10
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consider B = (1 + 10i+ 100j + 1000k) and A = (1 + i+ j + k), then

HR2
m −HRm−nHRm+n

=

(
B10m − A

9

)(
B10m − A

9

)
−
(
B10n−m − A

9

)(
B10n+m − A

9

)
=

(
B2102m −BA10m − AB10m + A2

92

)
−

(
B2102m −BA10m−n − AB10m+n − A2

92

)
=
AB10m(10n − 1)

92
− BA10m−n(10n − 1)

92

=
10n − 1

9

(
AB10m −BA10m−n

9

)
=Rn

(
AB10m −BA10m−n

9

)
=Rn

(
10m−n(AB10n −BA)

9

)
=
10m−n

9
Rn · (AB10n −BA) .

Now, by applying Lemma 15 in AB10n −BA, implies that

HR2
m −HRm−nHRm+n = 10m−nRn[

−1109Rn +

(
911 · 10n + 889

9

)
i−

(
889 · 10n + 1091

9

)
j +

(
1091 · 10n + 911

9

)
k

]
.

(22)

The Cassini identity follows directly from Proposition 16, given by the following corollary.

Corollary 17. [First Cassini’s Identity] For allm ≥ 1, we have

HR2
m −HRm−1HRm+1

=10m−1

[
−1109 + 1111i− 1109j +

(
11821

9

)
k

]
.

Demonstração. The result is verified by doing n = 1 in Equation (22).

The next result consists of the first version of d’Ocagne’s identity.

Proposition 18. [First d’Ocagne’s identity] Letm,n be natural. Form ≥ n we have

HRm+1HRn −HRmHRn+1 =
10n

9
=
[
−9171Rm−n −

(
889 · 10m−n + 911

)
i+

(
1091 · 10m−n + 889

)
j+

(
911 · 10m−n − 1091

)
k
]
.

11
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Demonstração. Again, by Proposition 12, we have that

HRm =
(1 + 10i+ 100j + 1000k)10m − (1 + i+ j + k)

9
=

B10m − A

9
,

consider B = (1 + 10i+ 100j + 1000k) and A = (1 + i+ j + k), then

HRmHRn+1 −HRm+1HRn

=

(
B10m − A

9

)(
B10n+1 − A

9

)
−
(
B10m+1 − A

9

)(
B10n − A

9

)
=

(
B210m+n+1 −BA10m − AB10n+1 + A2

92

)
−

(
B210m+n+1 −BA10m+1 − AB10n − A2

92

)
=
BA10m(10− 1)

92
− AB10n(10− 1)

92

=
10n

9
(BA10m−n − AB) .

Now, by applying Lemma 15 in (BA10m−n − AB), we conclude that

HRmHRn+1 −HRm+1HRn = 10n[
−1019Rm−n −

(
889 · 10m−n + 911

9

)
i+

(
1091 · 10m−n + 889

9

)
j +

(
911 · 10m−n − 1091

9

)
k

]
.

Since multiplication inH is not commutative, we also have similar results.

Proposition 19. [Second Catalan’s Identity] For allm, n ∈ N. Ifm ≥ n then

HR2
m −HRm+nHRm−n = 10m−nRn[

−1109Rn −
(
889 · 10n + 911

9

)
i+

(
1091 · 10n + 889

9

)
j +

(
911 · 10n − 1091

9

)
k

]
.

Follows directly from Proposition 19 the second Cassini’s identity.

Corollary 20. [Second Cassini’s Identity] For allm ≥ 1, we have

HR2
m −HRm+1HRm−1

=10m−1

[
−1109−

(
9881

9

)
i+ 1311j + 891k

]
.

Proposition 21. [Second D’Ocagne’s Identity] Letm,n be natural. Form ≥ n we have

HRnHRm+1 −HRn+1HRm =
10n

9[
−1109Rm−n +

(
911 · 10m−n + 889

9

)
i−

(
889 · 10m−n + 1091

9

)
j +

(
1091 · 10m−n + 911

9

)
k

]
.

12
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The next result is the generating function for the quaternion repunit numbers.

Proposition 22. The generating function for the quaternion repunit numbers is given by

GHRn(x) =
x

1− 11x+ 10x2
+

1

1− 11x+ 10x2
i+

11− 10x

1− 11x+ 10x2
j +

111− 110x

1− 11x+ 10x2
k.

Demonstração. Consider the generating function for the sequence of quaternion repunit num-

bers given byGHRn(x) =
∞∑
n=0

Qnx
n. Combining expressions−11xGHRn(x) e 10x2GHRn(x), we

obtain

GHRn(x) =
HR0 + (11HR1 − 11HR0)x

1− 11x+ 10x2

=
i+ 11j + 111k + (1 + 11i+ 111j + 1111k − 11i− 121j − 1221k)

1− 11x+ 10x2

=
x

1− 11x+ 10x2
+

1

1− 11x+ 10x2
i+

11− 10x

1− 11x+ 10x2
j +

111− 110x

1− 11x+ 10x2
k ,

which concludes the proof.

4. CONSIDERATIONS

In this paper, we introduced two new application of the Horadam sequences: the gaussian
repunit number and the quaternion repunit number. In addition, we presented the genera-
ting function for the repunit numbers. We provided some properties, recurrence relation,
generating function, and sum formula, as well as the Catalan, the Cassini, and the d’Ocgane
identities for each new sequence. In particular, for quaternions, due to the non-commutativity
of multiplication, there are two versions for each identity.

As far as we know, the results presented here are new in the literature. Moreover, the
repunit numbers can be studied in another set of numbers, and also in other perspectives, such
as matrix and combinatorial.
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