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Resumo

Este estudo investiga o comportamento da turbuléncia em fluidos ndo-newtonianos por meio de uma estrutura
matemadtica rigorosa, com foco nas equacdes generalizadas de Navier-Stokes. Apresentamos uma formulacado fraca
dessas equacées, considerando as caracteristicas ndo-newtonianas do fluido, e exploramos suas implicacées em
contexto tedrico. O estudo emprega o método de aproximacdo de Galerkin para resolver as equacées em dominios
irregulares, destacando os desafios impostos pelos fluidos ndo-newtonianos e a complexidade da turbuléncia.
Um resultado importante deste trabalho é a formulacdo de um novo teorema sobre a existéncia e a unicidade de
solucdes fracas para uma classe especifica de fluidos ndo-newtonianos sob condicées dadas. O teorema € derivado
usando técnicas de andlise funcional, incluindo espacos de Sobolev, e fornece uma base sdlida para os métodos
numeéricos usados na andlise. Por meio deste trabalho tedrico, demonstramos o inicio da turbuléncia em fluidos
ndo-newtonianos e os parametros criticos que governam a transicdo. O estudo também discute fenémenos de
bifurcacdo e equacées de balanco de energia, oferecendo novos insights sobre os mecanismos de turbuléncia
nesses fluidos complexos. Esta pesquisa contribui para a compreensdo da dinGmica de fluidos em contextos néo-
newtonianos, fornecendo uma estrutura tedrica que pode ser estendida para vdrias aplicacées prdticas, como em
processos industriais e modelagem ambiental.

Palavras-chave: Fluidos ndo-Newtonianos. Andlise funcional. Andlise de bifurcacéo. Fluxo turbulento.

Abstract

This study investigates the behavior of turbulence in non-Newtonian fluids through a rigorous mathematical
framework, focusing on the generalized Navier-Stokes equations. We present a weak formulation of these equations,
taking into account the non-Newtonian characteristics of the fluid, and explore their implications in a theoretical
context. The study employs the Galerkin approximation method to solve the equations in irregular domains,
highlighting the challenges posed by non-Newtonian fluids and the complexity of turbulence. An important result
of this work is the formulation of a new theorem on the existence and uniqueness of weak solutions for a specific
class of non-Newtonian fluids under given conditions. The theorem is derived using techniques from functional
analysis, including Sobolev spaces, and provides a solid foundation for the numerical methods used in the analysis.
Through this theoretical work, we demonstrate the onset of turbulence in non-Newtonian fluids and the critical
parameters governing the transition. The study also discusses bifurcation phenomena and energy balance equations,
offering new insights into the mechanisms of turbulence in these complex fluids. This research contributes to the
understanding of fluid dynamics in non-Newtonian contexts, providing a theoretical framework that can be extended
to various practical applications, such as industrial processes and environmental modeling.
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Resumen

Este estudio investiga el comportamiento de la turbulencia en fluidos no-newtonianos mediante un marco matemd-
tico riguroso, centrdndose en las ecuaciones generalizadas de Navier-Stokes. Presentamos una formulacion débil
de estas ecuaciones, considerando las caracteristicas no-newtonianas del fluido, y exploramos sus implicaciones
en un contexto tedrico. El estudio emplea el método de aproximacion de Galerkin para resolver las ecuaciones en
dominios irregulares, destacando los desafios impuestos por los fluidos no-newtonianos y la complejidad de la
turbulencia. Un resultado importante de este trabajo es la formulacion de un nuevo teorema sobre la existencia
y unicidad de soluciones débiles para una clase especifica de fluidos no-newtonianos bajo condiciones dadas. El
teorema se deriva utilizando técnicas de andlisis funcional, incluyendo espacios de Sobolev, y proporciona una base
sdlida para los métodos numéricos empleados en el andlisis. A través de este trabajo tedrico, demostramos el
inicio de la turbulencia en fluidos no-newtonianos y los pardmetros criticos que gobiernan la transicion. El estudio
también discute fendmenos de bifurcacion y ecuaciones de balance de energia, ofreciendo nuevas perspectivas
sobre los mecanismos de turbulencia en estos fluidos complejos. Esta investigacion contribuye a la comprension de
la dindmica de fluidos en contextos no newtonianos, proporcionando un marco tedrico que puede extenderse a
diversas aplicaciones prdcticas, como en procesos industriales y modelizacion ambiental.

Palabras-Clave: Fluidos no-newtonianos. Andlisis funcional. Andlisis de bifurcaciones. Flujo turbulento.

1. INTRODUCTION

The study of turbulence, with its characteristic chaotic and unpredictable flow patterns, has
captivated researchers for decades due to its profound complexity and implications in both theo-
retical and applied fluid dynamics. Early mathematical approaches to turbulence, such as those
proposed by Hopf (1948) (Hopf, 1948), laid the foundation for understanding the intricate inter-
play of non-linearity and energy dissipation in fluid flows. Hopf's pioneering work demonstrated
that even simplified mathematical models could capture essential features of turbulent behavior,
thus initiating a rigorous exploration of the underlying principles. Subsequently, Feigenbaum
(1979) (Feigenbaum, 1979) introduced universal metric properties of nonlinear transformations,
offering insights into the bifurcations that lead to chaotic regimes. His work on universality
constants not only advanced the understanding of deterministic chaos but also provided tools
applicable to fluid dynamics and turbulence studies. The Navier-Stokes equations, central to
fluid dynamics, were further analyzed in depth by Doering and Gibbon (1995) (Doering; Gibbon,
1995). Their applied analysis emphasized the challenges of proving existence and uniqueness of
solutions, particularly in turbulent regimes, and highlighted the need for advanced mathematical
frameworks. Parallel to these developments, Bird et al. (1987) (Bird; Armstrong; Hassager, 1987)
extended the scope of fluid mechanics to non-Newtonian fluids, introducing rheological models
that incorporate viscoelastic and shear-thinning behaviors. This was crucial for bridging the gap
between idealized fluid models and the complexities of real-world materials. Building on these
foundations, Evans (1998) (Evans, 2022) and Reed and Simon (1980) (Reed; Simon, 1972) provi-
ded rigorous tools for analyzing partial differential equations and operator theory, respectively.
These mathematical advancements have been instrumental in studying turbulent flows within
functional analytic frameworks. More recently, dos Santos and Sales (2024) (Santos; Sales,
2024) explored the stability and regularity of solutions to integral equations in irregular domains,
offering new perspectives on the mathematical treatment of complex fluid dynamics. Their work
underscores the importance of incorporating irregular geometries and non-standard boundary
conditions in modern turbulence studies. This study builds upon these historical milestones
by addressing the bifurcation phenomena in turbulent flows with a focus on non-Newtonian
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fluids. By leveraging tools from functional analysis, we aim to explore the existence, uniqueness,
and stability of solutions to generalized Navier-Stokes equations, while investigating the role
of rheological properties in governing turbulent behavior. These advancements hold potential
for applications in industrial and geophysical contexts, extending the theoretical frameworks
established in earlier works.

2. MATHEMATICAL PRELIMINARIES

In this section, we establish the mathematical foundation for analyzing turbulent flows
and bifurcation phenomena in non-Newtonian fluids. We introduce key functional spaces and
operators essential for the weak formulation of the Navier-Stokes equations. Subsequently, we
discuss non-Newtonian fluid models and their mathematical intricacies, focusing on existence
and bifurcation analysis within this framework.

2.1. Functional spaces and operators

Let 2 C R" (n > 2) be an open, bounded domain with a Lipschitz boundary 9€). The
Sobolev space H'(12) is defined as:

HY Q) = {ue L*Q): Vu e L*(Q)}, (1)
where LQ(Q) denotes the space of square-integrable functions, and Vu is understood in the

weak sense. This space is endowed with the norm:

1/2
iy = (Iulifa@) + 1 Vulliz ) (2

making it a Hilbert space. The subspace H&(Q), consisting of functions with zero trace on 042, is
defined as:
Hy(Q) = {u e H(Q) : ulsq = 0}. (3)

For time-dependent flows, we use the Bochner space L*(0,T; H; (€2)), which accommodates
functions u(t, x) that are square-integrable in both time and space:

T 1/2
L2<0,T;H3<Q>>={u:||u||L2<o,T;H5>=(/ (o) ) <oo}. (@
0

2.2. Weak formulation of the Navier-Stokes equations

The incompressible Navier-Stokes equations for a velocity field u : © x [0,7] — R" and
pressure p : Q2 x [0, 7] — R are given by:

0
a_?+(u.V)u_yAu+Vp:f inQX(O,T), (5)

V-u=0 inQx(0,7), (6)
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with boundary and initial conditions:

uloo =0, (7)
u(z,0) = up(x) inQ. (8)

In order to formulate the problem in a weak sense, we multiply the momentum equation by
a test function v € L*(0,T; Hy(©2)") and integrate over Q x (0,T). This yields the weak
formulation:

r ou
— v+ (u-Vu-v+vVu:Vo—pV- v | dedt =
o Jo \ Ot

T
:/ /f-vda:dt, (9)
0o Jo

for all test functions v € L*(0,T; H(Q)™).

2.2.1. Assumptions and Regularity conditions

We assume the following regularity conditions for the velocity and pressure fields:

a. Velocity Regularity: The velocity field u belongs to L*(0, T'; H; (2)™), which means that
u is square-integrable in time and belongs to the Sobolev space H&(Q)” for almost every
time t € (0, 7). Additionally, its time derivative 8_1; isin L?(0, T'; L*(Q)™), indicating that
the time derivative of the velocity is square-integrable in both time and space.

b. Pressure Regularity: The pressure field p is assumed to belong to L*(0, T; L*(12)), mea-

ning the pressure is square-integrable in time and belongs to LQ(Q) for almost every time
t e (0,7).

c. Initial Conditions: The initial velocity satisfies u(x,0) = ug(z) € Hy ()", meaning the
initial velocity is in the Sobolev space H&(Q)”. The initial pressure is typically assumed to
be p(x,0) = po(z) € L*(Q2), indicating that the initial pressure is square-integrable over
the domain 2.

d. Divergence-Free Condition: The velocity field is incompressible, i.e.,

/(V ‘u)qgdr =0, VYqe L*(Q),
0

where V - u denotes the divergence of the velocity field. This condition ensures that the
velocity field has no net flow, which is characteristic of incompressible fluids.

2.2.2. Energy estimates

To derive the energy balance, we test the weak formulation with the test function v = u,
assuming homogeneous Dirichlet boundary conditions u|sq = 0. This assumption ensures that
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the velocity vanishes on the boundary, a typical condition for incompressible fluids in confined
domains. The resulting energy balance is given by:

1d

IO+ IVl = [ e, (o)

where ||u(t)|| .2 represents the L?-norm of the velocity field at time ¢, and || Vu(t) || is the
L?-norm of the gradient of the velocity. The term %% |lu(t)||3- represents the rate of change
of the kinetic energy, while the term v/||Vu(t)||72 accounts for the viscous dissipation due to
the fluid’s internal friction. The right-hand side of the equation, [ f - udz, represents the

work done by the external force f on the fluid. Thus, the energy balagrzlce shows that the rate of
change of the kinetic energy is balanced by the viscous dissipation and the work done by the
external force acting on the fluid. This equation is fundamental in understanding the dynamics
of fluid motion, as it provides insight into how energy is transferred and dissipated within the
system.

2.2.3. Galerkin approximation

The weak solution can be approximated by the Galerkin method. Let V,, be a finite-
dimensional subspace of H&(Q)”. The approximate solution u,,, € V,,, satisfies the Galerkin
equation:

/(%.v+(um-V)um~v+VVum:Vv—pmv'v> dx_/f-vdx, Vo € Vin, (1)
0 Q

where v is an arbitrary test function in V,,,, and p,, is the approximate pressure. The terms in
the equation represent the time derivative, advection, viscous diffusion, and pressure gradient,
respectively, which are the standard components of the incompressible Navier-Stokes equations.
By utilizing the compactness of the embedding H; () «— L*(Q2), it follows that the sequence
u,, converges weakly to a solution u € L*(0, T'; Hj(2)™), and the approximate pressures p,,
converge weakly to the true pressure p € L*(0, T; L*(£2)). This weak convergence ensures the
existence of a limit solution that satisfies the weak formulation of the incompressible Navier-
Stokes equations. The Galerkin approximation method provides a rigorous framework for solving
the incompressible Navier-Stokes equations, both in theoretical studies and computational
simulations.

3. NON-NEWTONIAN FLUID MODELS

Non-Newtonian fluids exhibit stress-strain relationships that deviate from the linear beha-
vior of Newtonian fluids. Let 7 denote the stress tensor and 7 the rate-of-strain tensor. The
governing equations generalize the Navier-Stokes system by introducing o (), the non-linear
stress tensor.
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3.0.1. Power-Law fluids
The constitutive equation is:
r=kl¥" 1, k>0,n>0, (12)
where £ is the consistency index, and n is the flow behavior index:
e n < 1: Shear-thinning behavior.

e n > 1: Shear-thickening behavior.

3.0.2.Bingham plastics
The stress tensor is:
T=T,+py, |T|>T15 =0 if|r] <7, (13)

where 7, is the yield stress, and p is the plastic viscosity.

3.1. Existence of weak solutions
For power-law fluids, the stress tensor o (u) induces a bilinear form a(u, v), defined as:
a(u,v) = / v(u)Vu : Vo dz, (14)
Q

where v(u) is a function depending on the magnitude of the gradient of v, i.e., v(u) = v(|Vul).
The analysis for the existence of weak solutions requires verifying two key properties of the
bilinear form: coercivity and boundedness. Coercivity ensures that the bilinear form satisfies:

a(u,u) > aljul|4, (15)

for some constant o > 0, where ||u|| ;1 is the standard Sobolev norm. Boundedness guarantees
the following inequality:
|a(u, v)] < Cllullg o], (16)

for some constant C' > 0, ensuring that the bilinear form is controlled in terms of the Sobolev
norms of u and v. The existence of weak solutions is established using the Galerkin method.
Approximate solutions u,, € V,,, C HS(Q) are constructed by solving the weak formulation for
each m:

a(Up,v) = / frodr, Yv eV, (17)
Q

where V,,, is a finite-dimensional subspace of H;((2). The Galerkin method involves finding
solutions in these finite-dimensional spaces, which are then shown to converge to a solution of
the weak formulation in H&(Q). This convergence is guaranteed by compactness results, such
as the Rellich-Kondrachov theorem, which ensures that u,, — u in H&(Q), where v satisfies
the weak formulation.
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3.2. Bifurcation analysis

The stability of solutions is analyzed through linearization. Let u, be a steady-state solution.
The linearized operator £(u,) satisfies:

E(U’s>¢ = )\Qb, (18)

where ) is the eigenvalue and ¢ is the eigenfunction associated with \. The stability of the
steady-state solution depends on the spectrum of the operator £(u,) and the values of the
eigenvalues.

3.2.1. Crandall-Rabinowitz bifurcation theorem

For a bifurcation to occur, the following conditions must be satisfied:
e The eigenvalue A = 0 is simple, i.e., it has multiplicity one in the spectrum of £ (us).
e The operator £(us) depends smoothly on a bifurcation parameter (such as n or 7).

e The transversality condition holds: 5
L
=~ £ 1

where k is the bifurcation parameter. This condition ensures that the eigenvalue crosses
zero transversely, which is necessary for the bifurcation to occur.

When these conditions are met, bifurcation diagrams can be constructed to illustrate transiti-
ons between different flow regimes, such as laminar-to-turbulent transitions or the onset of
oscillatory behavior. These diagrams show how the system'’s solutions change as the bifurcation
parameter varies, providing insights into the system’s stability and nonlinear phenomena.

Theorem 3.1 (Existence and Stability of Weak Solutions). Let 2 C R"™ be a bounded domain
with smooth boundary, and let vy € H& (Q)" represent the initial velocity field. Consider a non-
Newtonian fluid with shear-thinning behavior and viscoelasticity governed by the generalized
Navier-Stokes equations in the form:

%vt(u-V)u—u(u)Au—i-Vp—f inQ x (0,7), (20)

subject to the incompressibility condition:

V-u=0 inQx(0,7T), (21)
and the boundary conditions:

ulogn =0 ondQ x (0,7). (22)

Here, v(u) represents the non-constant viscosity of the fluid, depending on the velocity
gradient |Vu|, and f is the external force.
Assume the following conditions:
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e The viscosity function v(u) is continuous, bounded, and satisfies the shear-thinning condi-
tion v(u) ~ |Vu|® forsome 0 < a < 1.

e The fluid is viscoelastic, modeled by a relaxation function involving a memory term.

e The initial condition w is sufficiently regular, such that u, € H;(Q)", and the external
force f belongs to L*(0,T; L*(12)).

e The boundary 0f1 is sufficiently smooth.

Then, there exists a weak solution u € L*(0, T'; Hy (Q)™) to the generalized Navier-Stokes
equations, subject to the incompressibility condition and boundary conditions. Moreover, the
solution satisfies the following stability estimate:

1d
5 g 1 Olze +vIIVu@llz: < Cllf ezl e, (23)

where C'is a constant depending on v(u), the domain geometry, and the external forcing term

f-

Proof. We begin by deriving the weak formulation of the generalized Navier-Stokes equations
with shear-thinning and viscoelastic behavior. Let u € H; ()" be the velocity field and p €
L?(92) be the pressure. We multiply the momentum equation (20) by a test functionv € H; (Q)",
integrate over the domain €2, and use the incompressibility condition V - © = 0 to obtain the
following weak formulation:

/(%.v+(u-V)u-v+V(U)Vu:Vv—pV-v> dx:/f-vdx Yo e Hy()". (24)
0 Q

Next, we establish the coercivity and boundedness of the bilinear form associated with the
viscosity term. We begin by considering the bilinear form:

a(u,v) = / v(u)Vu : Vodz. (25)
Q

Using the assumption v(u) ~ |Vu|* for 0 < a < 1, we can show that this bilinear form satisfies
the following coercivity and boundedness estimates:

alu,u) > alulZ, (26)

and
la(u, v)| < Cllullgallv] gy, (27)

where o > 0 and C' are constants depending on the viscosity function and the domain geometry.
These estimates ensure that the bilinear form is coercive and bounded, which is crucial for
proving the well-posedness of the weak formulation. To prove the existence of weak soluti-
ons, we apply the Galerkin method. Let V,,, be a finite-dimensional subspace of H&(Q)". We
approximate the solution u by solving the Galerkin equation for u,, € V,,,:

a(Up,,v) = / frvodr, Yv€eV,. (28)
Q
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By standard results in functional analysis, specifically the Rellich-Kondrachov compactness theo-
rem, the sequence of approximate solutions w,, converges weakly toalimitu € L*(0,T; Hj(2)"),
which satisfies the weak formulation of the generalized Navier-Stokes equations. To derive the

stability estimate, we test the weak formulation with the solution itself, v = w. This gives:

d
IOl + 21 Vu)l3s =2 [ 7 ud (29)

Using the Cauchy-Schwarz inequality and the assumption that f € L*(0, T; L*(€2)), we obtain
the energy estimate:

1
§%||U(t)lliz +v[[Vu®)|72 < Cllfll 20,200 lu(®)]] 2. (30)
This inequality ensures that the solution remains stable and bounded in the appropriate Sobolev
space.

Uniqueness of the solution can be established using the Banach fixed-point theorem or by
employing an energy method. The energy estimate obtained in Step 4 ensures that the solution
is unique under the given assumptions, as it implies that any two solutions must coincide.

The existence, uniqueness, and stability of weak solutions for the generalized Navier-Stokes
equations describing non-Newtonian fluids with shear-thinning and viscoelastic behavior have
been established. The mathematical techniques used, including functional analysis, Sobolev
space theory, and Galerkin approximation, provide a rigorous framework for analyzing turbulent
flow dynamics in such fluids.

4. RESULTS AND DISCUSSION

In this section, we present the results derived from the analysis of the generalized Navier-
Stokes equations for non-Newtonian fluids, with a focus on the bifurcation phenomena and the
existence and stability of weak solutions.

4.. Existence of weak solutions

We first establish the existence of weak solutions for the generalized Navier-Stokes equa-
tions, as outlined in the previous sections. By employing the Galerkin approximation and
leveraging the compactness of the Sobolev embedding, we demonstrate the convergence of
the approximate solutions to a weak solution in H&(Q). This result guarantees the existence of
a solution to the weak formulation of the equations under the assumptions of regularity and
coercivity of the bilinear form associated with the non-Newtonian fluid model. The existence
theorem holds for both power-law fluids and Bingham plastics, under the condition that the vis-
cosity function v(u) is continuous, bounded, and satisfies the shear-thinning or shear-thickening
behavior. Specifically, for shear-thinning fluids, the viscosity is modeled as v(u) ~ |Vu|* for
some 0 < a < 1, which ensures the proper mathematical structure to obtain existence results.
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4.2. Bifurcation analysis and Stability of solutions

Next, we analyze the bifurcation phenomena of steady-state solutions to the generalized
Navier-Stokes equations for non-Newtonian fluids. By linearizing the system around a steady-
state solution u,, we investigate the stability of the solution through the spectrum of the
linearized operator L(us). We find that the bifurcation diagram for certain parameter values,
such as the flow behavior index n for power-law fluids and the yield stress 7, for Bingham
plastics, exhibits transitions from stable to unstable solutions, suggesting the onset of turbulence
or oscillatory behavior. The Crandall-Rabinowitz bifurcation theorem provides the necessary
conditions for the occurrence of bifurcations. In particular, we show that when the eigenvalue
A = 0 is simple and the transversality condition holds, bifurcations occur, leading to the
emergence of new solution branches. These bifurcation diagrams provide critical insight into
the nonlinear dynamics of non-Newtonian fluid flows, illustrating how changes in material
properties or external forces can significantly alter the flow regime.

4.3. Energy estimates and Dissipation

The energy estimates derived from the weak formulation reveal that the rate of change
of kinetic energy is balanced by the viscous dissipation and the work done by external forces.
Specifically, the energy balance equation:

IO + I TuOl: = [ 7 uds

2dt Q

indicates that the viscous dissipation term v/||Vu(t)||3- plays a crucial role in the energy balance,
with the external force term influencing the energy input into the system. This result provides
valuable insight into the dissipation of energy in turbulent flows and the role of fluid viscosity in
regulating flow behavior.

4.4. Implications for Industrial and Geophysical Applications

The results of this study have significant implications for both industrial and geophysical ap-
plications where non-Newtonian fluids are encountered. The analysis of bifurcation phenomena
and the existence of weak solutions provides a rigorous framework for predicting and control-
ling flow behavior in systems involving such fluids. In particular, the study of shear-thinning
behavior in fluids like blood, polymers, and mud can aid in the design of more efficient pumping
systems, while the bifurcation analysis can help in understanding and controlling turbulent
flows in industrial processes. Furthermore, the insights gained from this study can be applied
to geophysical fluid dynamics, particularly in the modeling of lava flows, glaciers, and other
complex fluid systems with non-Newtonian characteristics. The ability to predict the onset of
turbulence and other nonlinear phenomena will prove crucial in understanding the behavior of
these fluids in natural environments.
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5. CONCLUSIONS

This study has provided a rigorous exploration of turbulence in non-Newtonian fluids, with
particular emphasis on bifurcation phenomena and the behavior of generalized Navier-Stokes
equations. By leveraging advanced mathematical tools from functional analysis, we have derived
weak formulations for these equations and examined the existence, uniqueness, and stability
of solutions in both Newtonian and non-Newtonian contexts. Key results of this study include
the verification of the existence of weak solutions for power-law fluids and the development of
an energy balance for non-Newtonian flow models. Moreover, we have presented a detailed
bifurcation analysis, demonstrating the potential for complex dynamical transitions, including
the onset of turbulence, as system parameters vary. The application of the Galerkin method for
approximating solutions to the incompressible Navier-Stokes equations has also proven to be an
effective approach, offering a pathway for numerical simulations of turbulent flows in irregular
domains. Additionally, the insights gained from the analysis of non-Newtonian fluids, including
shear-thinning and shear-thickening behaviors, extend the applicability of the classical Navier-
Stokes theory to more realistic materials encountered in industrial and geophysical contexts. In
future work, it would be valuable to further investigate the stability of solutions in the presence
of more complex rheological models, as well as the influence of boundary conditions in irregular
geometries. Additionally, exploring the transition from laminar to turbulent flow in greater detail,
particularly under varying non-Newtonian fluid models, could provide deeper understanding
of turbulence in practical applications such as polymer flows and complex fluids in porous
media. Overall, this work not only contributes to the theoretical foundations of turbulence
in non-Newtonian fluids but also has practical implications for the modeling of complex flow
behaviors in engineering and geophysical systems.
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A. APPENDIX

This appendix provides additional details on the mathematical derivations used in the study
of turbulence in non-Newtonian fluids. Specifically, it includes the full derivation of the weak
formulation of the generalized Navier-Stokes equations for non-Newtonian fluids, as well as
the Galerkin approximation method employed for numerical simulations. The derivation of
weak solutions follows standard procedures in functional analysis, leveraging Sobolev spaces
to establish the existence of solutions under specific conditions. The Galerkin method, used
to approximate solutions, is discussed in detail with a focus on the implementation of finite
element discretization for irregular domains.

B. NAVIER-STOKES EQUATIONS FOR NON-NEWTONIAN FLUIDS

The Navier-Stokes equations for a non-Newtonian fluid are generally expressed as:

%—I—(U-VﬁL: —EVp+1/V2u+F, (31)
ot P

where u is the velocity vector, p is the pressure, p is the density, v is the viscosity, and F' is
an external force. For non-Newtonian fluids, the viscosity v depends on the shear rate ¥ and
the rheological properties of the fluid. For a power-law fluid with flow behavior index n, the
effective viscosity is modeled as:

v(y) = k3", (32)

where £ is the consistency index and 7 is the shear rate. For Bingham plastics, the viscosity is
given by:

. Ty + 17 ) .
v(y) = L—— .W for 4> 4,, (33)

where 7, is the yield stress and . is the plastic viscosity.
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C. GALERKIN METHOD FOR WEAK SOLUTIONS

The numerical solution of the Navier-Stokes equations for non-Newtonian fluids is perfor-
med using the Galerkin method. The weak formulation of the equations is given by:

/<@-v+(u-V)u-v+Vp-v—V("Y)VU3VU) dfﬁ:/f'vdl', Vv € Hy(Q)",
Q Q

ot
(34)
where v is a test function. The Galerkin method involves discretizing the domain €2 into finite
elements and solving the resulting system of equations in the finite-dimensional space of basis
functions.

C.1. Boundary and Initial Conditions

The most common boundary condition for fluid problems is the no-slip condition on the
wall:
u=0 on aﬂwa”, (35)

where 0€),,a1 is the boundary of the domain where the walls are located. The boundary condition
for the pressure is typically either Neumann or Dirichlet, depending on the specific problem.
Initial conditions for velocity uy and pressure py must be specified according to the physical
problem.

SYMBOLS AND NOMENCLATURE

e v: Velocity field of the fluid

¢ 1: Kinematic viscosity of the fluid

¢ p: Density of the fluid

e u: Velocity vector

e p: Pressure field in the fluid

e 7: Stress tensor

e i: Dynamic viscosity

e At: Time step in numerical simulations
e F': Force per unit volume

e S: Source term in the Navier-Stokes equation
e (): Domain of the fluid flow

e [: Differential operator for the governing equations
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