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Abstract
This study aims to explore and develop results related to the fundamental law of arithmetic within the framework of
a commutative ring with unity. Specifically, it focuses on extending complex numbers to a vector space characterized
by three complex coordinates, bridging foundational theoretical concepts with practical applications. Considering
the extension of integer number sequences into other numerical sets, this research investigates a novel set of
numbers. The extension of real numbers to higher dimensions, such as quaternions and octonions, has gained
significance in physics due to their natural representation of certain symmetries in physical systems. In this work, we
illustrate how the properties of complex numbers can be systematically leveraged to derive both the foundational
basis and the multiplication rules for these advanced numerical systems.
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Resumo
Este estudo tem como objetivo explorar e desenvolver resultados relacionados com a lei fundamental da aritmética
no âmbito de um anel comutativo com unidade. Especificamente, centra-se na extensão dos números complexos
a um espaço vetorial caracterizado por três coordenadas complexas, fazendo a ponte entre conceitos teóricos
fundamentais e aplicações práticas. Considerando a extensão de sequências de números inteiros a outros conjuntos
numéricos, este trabalho investiga um novo conjunto de números. A extensão dos números reais a dimensões
superiores, como os quaterniões e os octónios, ganhou importância na física devido à sua representação natural de
certas simetrias em sistemas físicos. Neste trabalho, ilustramos como as propriedades dos números complexos
podem ser sistematicamente aproveitadas para derivar tanto a base fundamental como as regras de multiplicação
para estes sistemas numéricos avançados.

Palavras-chave: Número inteiro. Número complexo. Número Tricomplexo. Número complexo-Tricomplexo.

Resumen
El objetivo de este estudio es explorar y desarrollar resultados relacionados con la ley fundamental de la aritmética
en el contexto de un anillo conmutativo con unidad. En concreto, se centra en la extensión de los números complejos
a un espacio vectorial caracterizado por tres coordenadas complejas, tendiendo un puente entre los conceptos
teóricos fundamentales y las aplicaciones prácticas. Considerando la extensión de secuencias de números enteros
a otros conjuntos numéricos, esta investigación indaga en un nuevo conjunto de números. La extensión de los
números reales a dimensiones superiores, como los cuaterniones y los octoniones, ha cobrado importancia en
física debido a su representación natural de ciertas simetrías en los sistemas físicos. En este trabajo, ilustramos
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cómo pueden utilizarse sistemáticamente las propiedades de los números complejos para derivar tanto la base
fundamental como las reglas de multiplicación de estos sistemas numéricos avanzados.

Palabras-Clave: Número entero. Número complejo. Número tricomplejo. Número complejo-tricomplejo.
MSC2020 – 13B02, 11R04, 01A65

1. INTRODUCTION

This paper introduces a new ring, the Tricomplex ring with a complex component embedded in C.We will examine intricate structures in complex vector spaces from an algebraic perspective. The mainresult establishes the existence of a commutative ring with unity in a three-dimensional space over thefield of complex numbers. This result extends the findings proposed by Olariu (Olariu, 2002) and (Olariu,2000) for the field of real numbers. Additionally, a detailed description of these structures is provided.There is a noticeable lack of literature offering complete demonstrations of such structures. Classicaltextbooks on algebraic structures or linear algebra typically focus on, or are confined to, the classicalsets of natural, integer, and rational numbers. Few courses address structures beyond real or complexnumbers, and one of the objectives of this article is to contribute to filling this gap.Since the work of Gauss, several researchers have been interested in studying rings that havearithmetic similar to that of integers. These include the Gauss ring of integers, which consists of complexnumbers whose real and imaginary parts are integers. Another example of great importance in thiscontext is the Eisenstein ring of integers. This paper presents a ring in three complex coordinates withcomplex components, focusing on its algebraic properties.Several studies have focused on different number systems, with particular emphasis on complexnumbers and their generalizations. These quaternions, octonions and hybrid numbers represent an exten-sion or generalization of complex numbers and have attracted considerable attention from researchers.In the history of Mathematics, many researchers have been interested in studying rings analogous to thering of integers, in which arithmetic concepts can also be developed. Among them, we highlight the ringof Gaussian integers, whose study originates from Gauss’s investigations regarding cubic and biquadraticreciprocity. What makes this ring interesting is the fact that many arithmetic results in Gaussian integersare analogous to the results of arithmetic results in integers and can be illustrated geometrically. In thispaper, we define the Complex-Tricomplex numbers.The structure of this work is as follows: In Section 2, we provide a brief introduction to numericalsets beyond the familiar natural, integer, rational, and real numbers. This aims to spark curiosity ormotivate the question: Is there a numerical set analogous to the integers within three-dimensional spaceover the field of complex numbers? In Section 3, we define the set of Complex-Tricomplex elements anddemonstrate that it forms a unitary commutative ring embedded in the space C3.

2. BACKGROUND

In this section we take up some essential concepts about the field of complex numbers C and thering Real-Tricomplex, or just Tricomplex T = TC. This basis will be fundamental for the subsequentdevelopment, which consists of showing how the set Complex-Tricomplex is also a ring with the sameoperations of addition and multiplication defined in TQ, which we call here Triquaternion. The purposeof these notes is to provide an introduction to the Theory of Associative Algebras. This topic in algebra is
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significant not only in its own right but also for its connections to other areas of mathematics, physics,and genetics.The construction or historical facts about the structure of the complex number field can be consultedin (Baumgart, 1992; Boyer; Merzbach, 2011; Costa; Bastos, 2012; Eves, 2008; Felzenszwalb, 1979; Hefez;Villela, 2012; Lubeck, 2024; Milies, 2004; Monteiro, 1969; Santos, 2023; Roque, 2012; Roque; Carvalho,2012), among others. The formula that provides the roots of the equation ax2 + bx+ c = 0 in terms of
the radical√b2 − 4ac was known in antiquity by the Babylonians. During the Italian Renaissance (15thand 16th centuries), considerable effort was dedicated to generalizing the method of solving equationsusing radicals. The work Ars Magna, published by Cardano in 1545, contains the method for solvingcubic equations developed by Scipione del Ferro and Tartaglia, as well as the method for solving quarticequations developed by Ferrari.The attempt to solve an equation often led to square roots of negative numbers, and when thisoccurred, it was considered that the equation had no solution. In 1572, Bombelli observed that radicalssuch as √−1 had no meaning, but it was possible to perform calculations with these radicals whenthey canceled out. The development of calculations involving complex numbers progressed, despitesignificant doubts about their validity, as they were referred to as imaginary or impossible numbers. Thegraphical representation of these numbers as vectors or points in the plane was mentioned by Wallis(1673), Wessel (1797), Argand (1813), Warren (1828), and Gauss (1832).Initially, the symbolic approach to algebra was rejected by the Irish mathematician Hamilton. How-ever, in 1833, Hamilton proposed a reformulation of the complex numbers, representing the complexnumber a+ bi in the form of the ordered pair (a, b) of real numbers. The mystery surrounding the rootsof the equation x2 + 1 = 0 disappears, as its roots are (0, 1) and (0,−1). The expressions

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (ac− bd, ad+ bc)

define a field structure in R2, with a, b, c and d real numbers.Hamilton devoted a significant portion of his career to investigating the potential for defining amultiplication in three-dimensional Euclidean space that would also result in a field. This endeavorultimately proved to be unattainable. In 1843, Hamilton finally succeeded in defining a multiplication in
R4, where: The following equations are true:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,

with 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1). Hamilton demonstrated that allthe axioms of the field are satisfied, with the exception of commutativity. This number system, designatedas quaternions, constituted the inaugural example of a non-commutative field. Some months after thediscovery of quaternions, Graves introduced the octonions, defining a multiplication in R8. This systemof numbers was independently discovered by Cayley in 1845 and is therefore also referred to as Cayley
numbers. This number system is neither commutative nor associative.From this point, various other examples and generalizations emerged. In his work Lecture on
Quaternions (1853), Hamilton introduced the concept of hypercomplex numbers. A hypercomplex numbersystem consists of all symbols of the form:

x1e1 + x2e2 + · · ·+ xnen,

where x1, x2, . . . , xn are real or complex numbers, and e1, e2, . . . , en are the units of the system. In thearticle A Memoir On The Theory of Matrices, published in 1858, Cayley introduced what is now knownas the algebra of matrices. Other contributions were made by Grassmann (1844), Clifford (1878), andSylvester (1884). The classification of associative hypercomplex number systems, that is, associativealgebras, was extensively studied during the second half of the 19th century by B. Peirce and his son C.S. Peirce, Frobenius, Scheffers, Molien, Cartan, and others. The results obtained formed a satisfactory
3
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theory for algebras over R or C. This structural theory was extended to finite-dimensional algebras overan arbitrary field by Wedderburn in 1907. In his article On Hypercomplex Numbers, Wedderburn includeda section on non-associative algebras.Here, we consider that a complex number C = {a+ bi : a, b ∈ R; i2 = −1} can be expressed as
α = a+ bi where a is the real part and b is the imaginary part, with i being the imaginary unit, where
i2 = −1. In C we consider the two operations: addition and multiplication. So the addition of twocomplex numbers α1 = a1 + b1i and α2 = a2 + b2i is given by:

α1 + α2 = (a1 + a2) + (b1 + b2)i ,

and the multiplication of two complex numbers α1 = a1 + b1i and α2 = a2 + b2i by:
α1 · α2 = (a1a2 − b1b2) + (a1b2 + b1a2)i ;

where ai, bi ∈ R for i = 1, 2. For all α ∈ C the complex conjugate of α = a+ bi is α = a− bi .Other set of numbers was introduced by Özdemir in (Özdemir, 2018), where the author defines theset of hybrid numbers, which includes complex, dual, and hyperbolic numbers. This set is given by
K = {a+ bi+ cϵ+ dh : a, b, c, d ∈ R, i2 = −1, ϵ2 = 0,h2 = 1, ih = −hi = ϵ+ i}.

This number system generalizes the complex numbers (i2 = −1), hyperbolic numbers (h2 = 1), and dualnumbers (ϵ2 = 0), where i is the complex unit, ϵ is the dual unit, and h is the hyperbolic unit. Theseunits are collectively referred to as hybrid units. According to (Özdemir, 2018), two hybrid numbersare considered equal if all their components are individually equal. The sum of two hybrid numbers isobtained by summing their corresponding components. The addition operation in the hybrid numbersystem is both commutative and associative. The zero element acts as the additive identity. For any hybridnumber k, its symmetric element under addition is−k, which is defined by negating all of its components.This shows that (K,+) forms an Abelian group. The conjugate of a hybrid number k = a+ bi+ cϵ+ dhis defined as
k = a− bi− cϵ− dh.

In recent years, this number system has gained traction in various fields of applied science, and severalresearchers have applied it in different contexts. For further applications of hybrid numbers, we refer thereader to (Özdemir, 2018; Öztürk; Özdemir, 2020; Akbıyık et al., 2021).More recently, Olariu in (Olariu, 2002) and (Olariu, 2000) introduced a concept of Tricomplexnumbers which are expressed in the form (x, y, z) = x+ yi+ zj, where x, y, and z are real numbers and
i and j are imaginary units. In the context of mathematics, a Tricomplex number represents an elementof a number system that extends the complex numbers. In a manner comparable to complex numbers,which have a real part and an imaginary part, Tricomplex numbers are defined by two imaginary parts inaddition to a real part. First, consider T the ring of real Tricomplex numbers, that is, the set of orderedtriples of real numbers (x, y, z), with the operations of addition (+), and multiplication (×) given by:

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2) , (1)
and

(x1, y1, z1)× (x2, y2, z2) = (x1x2 + y1z2 + z1y2, z1z2 + x1y2 + y1x2, y1y2 + x1z2 + z1x2) ; (2)
where (xi, yi, zi) ∈ R3 for all i = 1, 2 and 3. According to Equation (1), the sum of the Tricomplexnumbers (x1, y1, z1) and (x2, y2, z2) is given by the Tricomplex number (x1 + x2, y1 + y2, z1 + z2).Similarly, according to Equation (2), the product of the Tricomplex numbers (x1, y1, z1) and (x2, y2, z2)is the Tricomplex number (x1x2 + y1z2 + z1y2, z1z2 + x1y2 + y1x2, y1y2 + x1z2 + z1x2). Note that themultiplication rules for the imaginary units is given by ij = ji = 1, i2 = j, and j2 = i.
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The Tricomplex numbers and their operations can be represented as T = (T,+,×). It is straightfor-ward to verify, through direct calculation, that the Tricomplex zero is represented by the vector (0, 0, 0),denoted by the symbol 0. Similarly, the Tricomplex unity is represented by the point (1, 0, 0), denoted bythe symbol 1. Furthermore, it can be demonstrated that the Tricomplex ring is both commutative and aunit ring (see (Olariu, 2000), (Mondal; Pramanik, 2015), and (Ottoni; Deus; Ottoni, 2024), along withtheir references). Therefore, the Tricomplex ring T can be described as a “symmetric” ring with respectto the ring of integers, embedded within the three-dimensional space R3. By “symmetric”, we mean thatthe basic laws of arithmetic hold in T, making it a natural domain for defining numerical sequences. Fornumerical sets that have a similar algebraic structure to the integers, see (Alves; Oliveira; Strey, 2023;Felzenszwalb, 1979; Hefez; Villela, 2012; Moura; Oliveira; Strey, 2022; Santos, 1998), and closely relatedreferences therein.Tricomplex numbers are a powerful mathematical construct, particularly useful in the study ofthree-dimensional systems. They also have potential applications in physics and engineering, wherethree-dimensional models are a fundamental aspect of many phenomena. Additionally, in (Richter, 2022),the work explores a four-dimensional complex algebraic structure, which has applications in constructingdirectional probability distributions. In summary, Tricomplex numbers provide a valuable framework forunderstanding and modeling three-dimensional systems, with potential applications extending beyondmathematics into physics and engineering.

3. COMPLEX-TRICOMPLEX RING

In this text we assume that the reader has minimal knowledge of the algebraic structure of com-plexes, so we assume that (C,+, ·) is a field. For readers less experienced in abstract mathematics, werecommend (Beites, 2018; Domingues; Iezzi, 2003; Felzenszwalb, 1979; Hefez, 1993; Lang, 2005; Lequain;Garcia, 1983; Lubeck, 2024) for looking up some definitions or concepts.In this section we denote by TQ the set with the vector (α1, α2, α3) ∈ C3, that is, each component
αi, i = 1, 2 and 3, are complex elements, with the ordinary operations of addition (+):

(α1, β1, γ1) + (α2, β2, γ2) = (α1 + α2, β1 + β2, γ1 + γ2) , (3)
and multiplication (×) given by:
(α1, β1, γ1)× (α2, β2, γ2) = (α1α2 + β1γ2 + γ1β2, γ1γ2 + α1β2 + β1α2, β1β2 + α1γ2 + γ1α2) , (4)

where (αi, βi, γi) ∈ C3 for all i = 1, 2 and 3.
Example 1. For instance, for vectors (22 + 8i, 3 + 25i, 31 + 3i) and (4− 25i, 72 + 5i, 4− 52i) in TQ,
we get:

(22 + 8i, 3 + 25i, 31 + 3i) + (4− 25i, 72 + 5i, 4− 52i)

= ([22 + 4] = [8− 25]i, [3 + 72] + [25 + 5]i, [31 + 4] + [3− 52]i)

= (26− 17i, 75 + 30i, 35− 49i) ,
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and

(22 + 8i, 3 + 25i, 31 + 3i)× (4− 25i, 72 + 5i, 4− 52i)

= ([22 + 8i][4− 25i] + [3 + 25i][4− 52i] + [31 + 3i][72 + 5i],

[31 + 3i][4− 52i] + [22 + 8i][72 + 5i] + [3 + 25i][4− 25i],

[3 + 25i][72 + 5i] + [22 + 8i][4− 52i] + [31 + 3i][4− 25i])

= ([22.4 + 8.25] + [8.4− 22.25]i+ [3.4 + 25.52] + [25.4− 3.52]i

+[31.72− 3.5] + [31.5 + 3.72]i, [31.4 + 3.52] + [3.4− 31.52]i

+ [22.72− 8.5] + [22.5 + 8.72]i+ [3.4 + 25.25] + [25.4− 3.25]i,

[3.72− 25.5] + [3.5 + 25.72]i+ [22.4 + 8.52] + [8.4− 22.52]i

+[31.4 + 3.25] + [3.4− 31.25]i)

= (288− 518i+ 1312− 56i+ 2217 + 371i, 280− 1600i+ 1544 + 686i+ 637 + 25i,

91 + 1815i+ 504− 1112i+ 199− 763i)

= (3817− 203i, 2461− 889i, 794− 60i).

The aim of this paper is to ascertain whether the proposed extension of the complex numbers,designated as TQ, with the operations defined in Equations (3) and (4) satisfies the fundamental laws ofarithmetic, that is:
Theorem 2. LetTQ be the set of (α, β, γ) ∈ C3. Then (TQ,+,×) is a commutative ring with unit, where
the addition and multiplication operations are defined respectively in the equations (3) and (4) .

The Theorem 2 is a direct consequence of the following results.
Proposition 3. Let TQ be the set of (α, β, γ) ∈ C3. Then (TQ,+) is an abelian group, with the addition
operation defined in the equations (3).
Proof. LetTQ be the set of ordered triples of complex numbers equipped with the addition operation (3),that is, defined as the usual vector sum in C3. So, given (α1, β1, γ1) and (α2, β2, γ2) in TQ, the sumis defined as the ternary sum (α1 + α2, β1 + β2, γ1 + γ2). It is easy to see that this ordinary additionsatisfies the following properties, as long as this property applies to each component of the complexfield:

• (A1): Associativity of addition, that is,
[(α1, β1, γ1) + (α2, β2, γ2)] + (α3, β3, γ3) = (α1, β1, γ1) + [(α2, β2, γ2) + (α3, β3, γ3)] ;

• (A2): Commutativity of addition, that is,
(α1, β1, γ1) + (α2, β2, γ2) = (α2, β2, γ2) + (α1, β1, γ1) ;

• (A3): Existence of a neutral element for addition, that is, there exists (0, 0, 0) ∈ TQ, such that forany (α, β, γ) ∈ TQ,
(α, β, γ) + (0, 0, 0) = (α, β, γ) ;

• (A4): Existence of the opposite element, that is, for every (α, β, γ) ∈ TQ, there exists the element
(−α,−β,−γ) ∈ TQ, called the opposite element of (α, β, γ) ∈ TQ, such that

(α, β, γ) + (−α,−β,−γ) = (0, 0, 0) .
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From the properties mentioned above, and according to the Definition in (Domingues; Iezzi, 2003; Hefez;Villela, 2012) , (TQ,+) is an abelian group.
In the next result, we will check the associativity property of multiplication in TQ.

Proposition 4. For all A = (α1, β1, γ1), B = (α2, β2, γ2) and C = (α3, β3, γ3) in TQ, the identity
(A×B)× C = A× (B × C) holds.

Proof. A direct calculation shows that:
(A×B)× C

= [(α1, β1, γ1)× (α2, β2, γ2)]× (α3, β3, γ3)

= [(α1α2 + β1γ2 + γ1β2, γ1γ2 + α1β2 + β1α2, β1β2 + α1γ2 + γ1α2)]× (α3, β3, γ3)

=
(
(α1α2 + β1γ2 + γ1β2)α3 + (γ1γ2 + α1β2 + β1α2)γ3 + (β1β2 + α1γ2 + γ1α2)β3,

(β1β2 + α1γ2 + γ1α2)γ3 + (α1α2 + β1γ2 + γ1β2)β3 + (γ1γ2 + α1β2 + β1α2)α3,

(γ1γ2 + α1β2 + β1α2)β3 + (α1α2 + β1γ2 + γ1β2)γ3 + (β1β2 + α1γ2 + γ1α2)α3

)
=

(
α1α2α3 + α1β2γ3 + α1γ2β3 + β1β2β3 + γ1β2α3 + γ1γ2γ3 + β1α2γ3 + γ1α2β3,

β1β2γ3 + β1γ2γ3 + β1α2α3 + α1γ2γ3 + γ1α2γ3 + α1α2β3 + γ1β2β3 + γ1α2α3 + α1β2α3,

γ3α1α2 + β1γ2γ3 + γ1β2γ3 + γ1γ2β3 + α1β2β3 + β1α2β3 + β1β2α3 + α1γ2α3 + γ1α2α3

)
=

(
α1(α2α3 + β2γ3 + γ2β3) + β1(γ2α3 + α2γ3 + β2β3) + γ1(β2α3 + γ2γ3 + α2β3),

γ1(α2γ3 + β2β3 + α2α3) + α1(γ2γ3 + α2β3 + β2α3) + β1(β2γ3 + γ2β3 + α2α3),

β1(γ2γ3 + α2β3 + β2α3) + α1(γ3α2 + β2β3 + γ2α3) + γ1(β2γ3 + γ2β3 + α2β3)
)

= (α1, β1, γ1)× (α2α3 + β2γ3 + γ2β3, γ2γ3 + α2β3 + β2α3, β2β3 + α2γ3 + γ2α3)

= (α1, β1, γ1)× [(α2, β2, γ2)× (α3, β3, γ3)]

= A× (B × C) ,

this completes the proof.
The following result examines the distributive property of multiplication in relation to addition inthe context of the mathematical construction of the ring TQ.

Proposition 5. For all A = (α1, β1, γ1), B = (α2, β2, γ2) and C = (α3, β3, γ3) in TQ, the identity
A× (B + C) = (A×B) + (A× C) holds.

Proof. Note that
A× (B + C)

= (α1, β1, γ1)× [(α2, β2, γ2) + (α3, β3, γ3)]

= (α1, β1, γ1)× (α2 + α3, β2 + β3, γ2 + γ3)

= (α1(α2 + α3) + β1(γ2 + γ3) + γ1(β2 + β3),

γ1(γ2 + γ3) + α1(β2 + β3) + β1(α2 + α3),

β1(β2 + β3) + α1(γ2 + γ3) + γ1(α2 + α3))

= (α1α2 + α1α3 + β1γ2 + β1γ3 + γ1β2 + γ1β3,

γ1γ2 + γ1γ3 + α1β2 + α1β3 + β1α2 + β1α3,

β1β2 + β1β3 + α1γ2 + α1γ3 + γ1α2 + γ1α3)

= (α1α2 + β1γ2 + γ1β2, γ1γ2 + α1β2 + β1α2, β1β2 + α1γ2 + γ1α2) +

(α1α3 + β1γ3 + γ1β3, γ1γ3 + α1β3 + β1α3, β1β3 + α1γ3 + γ1α3)

= (α1, β1, γ1)× (α2, β2, γ2) + (α1, β1, γ1)(α3, β3, γ3)

= (A×B) + (A× C) ,
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which verifies the result.
Combining the Propositions 3, 4 and 5, we conclude that the set of Tricomplex numbers with complexentries TQ and with the operations addition and multiplication, respectively by Equations (3) and (4),forms a ring, that is, the Complex-Tricomplex (TQ,+,×) it is a ring.Now, the commutativity property of multiplication in the context of the ring TQ will now be exam-ined.

Proposition 6. The multiplication in TQ is commutative, that is,A×B = B ×A, withA = (α1, β1, γ1)
andB = (α2, β2, γ2) in TQ.

Proof. A straightforward calculation demonstrates that:
A×B = (α1, β1, γ1)× (α2, β2, γ2)

= (α1α2 + β1γ2 + γ1β2, γ1γ2 + α1β2 + β1α2, β1β2 + α1γ2 + γ1α2)

= (α2α1 + β2γ1 + γ2β1, γ2γ1 + α2β1 + β2α1, β2β1 + α2γ1 + γ2α1)

= (α2, β2, γ2)× (α1, β1, γ1)

= B ×A ,

as required.
For illustrative purposes, consider the example.

Example 7. Consider the vectors A = (22 + 8i, 3 + 25i, 31 + 3i) andB = (4− 25i, 72 + 5i, 4− 52i)
in TQ. According to Example 1, we get

A×B = (22 + 8i, 3 + 25i, 31 + 3i)× (4− 25i, 72 + 5i, 4− 52i)

= (3817− 203i, 2461− 889i, 794− 60i) . (5)
Also note that,

B ×A

= (4− 25i, 72 + 5i, 4− 52i)× (22 + 8i, 3 + 25i, 31 + 3i)

= ([4− 25i][22 + 8i] + [72 + 5i][31 + 3i] + [4− 52i][3 + 25i],

[4− 52i][31 + 3i] + [4− 25i][3 + 25i] + [72 + 5i][22 + 8i],

[72 + 5i][3 + 25i] + [4− 25i][31 + 3i] + [4− 52i][22 + 8i])

= ([4.22 + 25.8] + [4.8− 25.22]i+ [72.31− 5.3] + [72.3 + 5.31]i

+[4.3 + 52.25] + [4.25− 52.3]i, [4.31 + 52.3] + [4.3− 52.31]i

+[4.3 + 25.25] + [4.25− 25.3]i+ [72.22− 5.8] + [72.8 + 5.22]i,

[72.3− 5.25] + [72.25 + 5.3]i+ [4.31 + 25.3] + [4.3− 25.31]i

+[4.22 + 52.8] + [4.8− 52.22]i)

= (288− 518i+ 2217 + 371i+ 1312− 56i, 280− 1600i+ 637 + 25i+ 1544 + 686i,

91 + 1815i+ 199− 763i+ 504− 1112i)

= (3817− 203i, 2461− 889i, 794− 60i), (6)
this result (6)matches the value obtained for (5).

Finally, we prove that TQ is a unity ring, that is, the element (1C, 0, 0) in TQ is the unity.
Proposition 8. For every element (α, β, γ) ∈ TQ, the identity (α, β, γ)× (1C, 0, 0) = (α, β, γ) holds.

8
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Proof. See that:
(α, β, γ)× (1C, 0, 0) = (α, β, γ)× (1C, 0, 0)

= (α1C + β0 + γ0, γ0 + α0 + β1C, β0 + α0 + γ1C)

= (α+ 0 + 0, 0 + β + 0, 0 + 0 + 1Cα)

= (α, β, γ) ,

as needed.
Remark 9. It should be noted that the ring Complex-Tricomplex, denoted by TQ , is not an integrity
ring. To illustrate this, consider the following example, consider A = (1C,−1C, 0) andB = (1C, 1C, 1C).
According to Equation (2), the product α× β is

A×B = (1C,−1C, 0)× (1C, 1C, 1C)

= (1C − 1C + 0, 0− 1C + 1C,−1C + 1 + 0)

= (0 + 0 + 0, 0 + 0 + 0, 0 + 0 + 0)

= (0, 0, 0) ,

which completes our argument, since we have two non-null elements in TQ whose product is null.

4. VECTOR SPACES OVER THE FIELD OF COMPLEX NUMBERS

Moreover, we can conclude that TQ is a vector space over the field of complex numbers C. Thismeans it is a mathematical structure consisting of the set TQ, along with two operations: vector addition,as defined in Equation (1), and scalar multiplication, as defined by
α · (α1, β1, γ1) = (α · α1, α · β1, α · γ1)

for all α ∈ C and A = (α1, β1, γ1) ∈ TQ. This structure (TQ,+, ·) satisfies the following axioms of avector space. For A,B,C ∈ TQ and α, β ∈ C, the following properties are verified:
• Associativity of addition: (A+B) + C = A+ (B + C).
• Additive identity: There exists 0 ∈ TQ such thatB + 0 = B for allB ∈ TQ.
• Additive inverse: For everyB ∈ TQ, there exists−B ∈ TQ such thatB + (−B) = 0.
• Commutativity of addition: A+B = B +A.
• Associativity of scalar multiplication: α · (β ·B) = (α · β) ·B.
• Multiplicative identity: 1C ·B = B, where 1C is the identity element of C.
• Distributivity of scalar over vectors: α · (A+B) = α ·A+ α ·B.
• Distributivity of scalar over scalars: (α+ β) ·B = α ·B + β ·B.
As a vector space, (TQ,+, ·) has dimension 3 over the field of complex numbersC, since any vector

(α, β, γ) ∈ TQ can be expressed as a linear combination of the three linearly independent canonicalvectors (1C, 0, 0), (0, 1C, 0), and (0, 0, 1C). Specifically, we have:
(α, β, γ) = α(1C, 0, 0) + β(0, 1C, 0) + γ(0, 0, 1C) .

9



RMAT V. 1, N. 1 | 2025

5. FINAL CONSIDERATIONS

This work introduced an extension of the real Tricomplex ring, as defined by Olariu(Olariu, 2002;Olariu, 2000), representing a three-dimensional number system over the real numbers and extendingthe concept of complex numbers. Based on this foundation, a Complex-Tricomplex ring was defined as athree-dimensional number system over the field of complex numbers. It was demonstrated that the TQring shares an algebraic structure analogous to that of the ring of integers. According (Mondal; Pramanik,2015; Richter, 2022) the Tricomplex ring T has numerous applications, including its role in verifying asequence in three-dimensional space that reflects the properties of the Fibonacci sequence, known asthe Fibonacci Tricomplex sequence, see (Costa et al., 2024); and in (Costa; Catarino; Santos, 2025) theauthors examine the symmetrical properties for the Tricomplex Repunit sequence to those we knowfor the ordinary repunit sequence. Similarly, the ring TQ can serve as a support ring for identifying ordefining new (extensions or generalizations) Complex-Tricomplex sequences. It is hoped that this systemwill continue to be explored by researchers in applied sciences. In future works, we believe that thisextension of the Tricomplex ring TC could serve as a foundation for defining extensions of numericalsequences. Furthermore, it aims to enable the extension or generalization of certain sequences to thesesets of numbers.
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