Curvas Planas de Largura Constante: Teorema de Barbier
Resumo
Já imaginou uma bicicleta cujas rodas não tivessem o formato de um círculo? Neste trabalho discutiremos os conjuntos convexos, mais especificamente aqueles que possuem a mesma característica do círculo, a largura constante. Os conjuntos de largura constante estão presentes em várias áreas da engenharia, na arquitetura e no designer de diversos produtos. O Triângulo de Reuleuax, um exemplo mais comum dessas curvas de largura constante, é bastante empregado na construção de uma broca que gera um “furo quadrado”. Ao longo do texto demonstramos o Teorema de Barbier, o qual afirma que todo conjunto de largura constante m tem perímetro $\pi m$ e ainda veremos que a área destes conjuntos será sempre maior que a do Triângulo de Reuleaux e menor que a do círculo. A partir desse estudo constatamos que existem diversas curvas que podem substituir o círculo em algumas situações, por exemplo, em uma roda de bicicleta.
Copyright (c) 2020 Revista de Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob aLicença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.