Turbulent flow: Innovations in viscosity analysis
Resumo
The mathematical analysis outlined in this study establishes a foundational framework for exploring the regularity of the Navier-Stokes equations. Within this scope, our research represents a significant advancement in utilizing the Smagorinsky model in conjunction with Large-Eddy Simulation (LES), culminating in the formulation of a novel theorem rooted in Banach and Sobolev Spaces. While the explicit construction of an anisotropic viscosity model is beyond the current scope, this theorem lays the groundwork for its development. By employing sophisticated mathematical analysis, our work facilitates a comprehensive grasp of the complexities surrounding the regularity challenges inherent in the Navier-Stokes equations.
Referências
title={SB Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000, 771 pp.},
author={Cant, Stewart},
journal={Combustion and Flame},
volume={125},
number={4},
pages={1361--1362},
year={2001}
}
@article{john2014numerical,
title={Numerical methods for incompressible flow problems I},
author={John, Volker},
journal={University Lecture, Freie Universit{\"a}t Berlin},
year={2014}
}
@article{hoffman2006new,
title={A new approach to computational turbulence modeling},
author={Hoffman, Johan and Johnson, Claes},
journal={Computer Methods in Applied Mechanics and Engineering},
volume={195},
number={23-24},
pages={2865--2880},
year={2006},
publisher={Elsevier}
}
@book{sagaut2005large,
title={Large eddy simulation for incompressible flows: an introduction},
author={Sagaut, Pierre},
year={2005},
publisher={Springer Science \& Business Media}
}
@book{ferziger2019computational,
title={Computational methods for fluid dynamics},
author={Ferziger, Joel H and Peri{\'c}, Milovan and Street, Robert L},
year={2019},
publisher={springer}
}
@article{kolmogorov1991local,
title={The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers},
author={Kolmogorov, Andrei Nikolaevich},
journal={Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences},
volume={434},
number={1890},
pages={9--13},
year={1991},
publisher={The Royal Society London}
}
@article{lilly1992proposed,
title={A proposed modification of the Germano subgrid-scale closure method},
author={Lilly, Douglas K},
journal={Physics of Fluids A: Fluid Dynamics},
volume={4},
number={3},
pages={633--635},
year={1992},
publisher={American Institute of Physics}
}
@article{breuer1998large,
title={Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects},
author={Breuer, Michael},
journal={International journal for numerical methods in fluids},
volume={28},
number={9},
pages={1281--1302},
year={1998},
publisher={Wiley Online Library}
}
@article{lilly1992proposed,
title={A proposed modification of the germano sugrid-scale closure method},
author={Lilly, DK},
journal={Phys Fluids A},
volume={4},
pages={633--635},
year={1992}
}
@article{lions1969quelques,
title={" Quelques M{\'e}thodes de R{\'e}solution des Probl{\`e}mes aux Limites Non-Lin{\'e}aires,''},
author={Lions, J-L},
journal={Dunod},
year={1969}
}
@phdthesis{jiroveanu2002analyse,
title={Analyse th{\'e}orique et num{\'e}rique de certains mod{\`e}les de viscosit{\'e} turbulente},
author={Jiroveanu, Delia},
year={2002},
school={Universit{\'e} Joseph Fourier (Grenoble; 1971-2015)}
}
Copyright (c) 2024 Revista de Matemática da UFOP ( RMAT)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob aLicença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.