Bifurcation phenomena in turbulent flows: Functional analysis and non-Newtonian fluids
Abstract
This study investigates the behavior of turbulence in non-Newtonian fluids through a rigorous mathematical framework, focusing on the generalized Navier-Stokes equations. We present a weak formulation of these equations, considering the non-Newtonian characteristics of the fluid, and explore their implications in theoretical and numerical contexts. The study employs the Galerkin approximation method to solve the equations in irregular domains, highlighting the challenges posed by non-Newtonian fluids and the complexity of turbulence. A key result of this work is the formulation of a new theorem on the existence and uniqueness of weak solutions for a specific class of non-Newtonian fluids under given conditions. The theorem is derived using functional analysis techniques, including Sobolev spaces, and provides a solid foundation for the numerical methods used in the analysis. Through this theoretical work, we demonstrate the onset of turbulence in non-Newtonian fluids and the critical parameters governing the transition. The study also discusses bifurcation phenomena and energy balance equations, offering new insights into the mechanisms of turbulence in these complex fluids. This research contributes to the understanding of fluid dynamics in non-Newtonian contexts, providing a theoretical framework that can be extended to various practical applications, such as in industrial processes and environmental modeling.
References
title={A mathematical example displaying features of turbulence},
author={Hopf, Eberhard},
journal={Communications on Pure and Applied Mathematics},
volume={1},
number={4},
pages={303--322},
year={1948},
publisher={Wiley Online Library},
url={https://doi.org/10.1002/cpa.3160010404}
}
@article{feigenbaum1979universal,
title={The universal metric properties of nonlinear transformations},
author={Feigenbaum, Mitchell J},
journal={Journal of Statistical Physics},
volume={21},
pages={669--706},
year={1979},
publisher={Springer}
}
@book{doering1995applied,
title={Applied analysis of the Navier-Stokes equations},
author={Doering, Charles R and Gibbon, John D},
number={12},
year={1995},
publisher={Cambridge university press}
}
@article{bird1987dynamics,
title={Dynamics of polymeric liquids. Vol. 1: Fluid mechanics},
author={Bird, Robert Byron and Armstrong, Robert Calvin and Hassager, Ole},
year={1987},
publisher={John Wiley and Sons Inc., New York, NY}
}
@article{dos2024uniqueness,
title={Uniqueness, regularity, continuity, and stability of solutions of integral equations in irregular domains},
author={dos Santos, R{\^o}mulo Damasclin Chaves and Sales, Jorge Henrique},
journal={Caderno Pedag{\'o}gico},
volume={21},
number={8},
pages={e6478--e6478},
year={2024}
}
@book{evans2022partial,
title={Partial differential equations},
author={Evans, Lawrence C},
volume={19},
year={2022},
publisher={American Mathematical Society}
}
@book{reed1972methods,
title={Methods of modern mathematical physics},
author={Reed, Michael and Simon, Barry and Simon, Barry and Simon, Barry},
volume={1},
year={1972},
publisher={Academic press New York}
}
Copyright (c) 2025 Revista de Matemática da UFOP (RMAT)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob aLicença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.