An onto-semiotic perspective of the research problems and methods in mathematics education

Keywords: Mathematics education, Didactic research, Onto-semiotic approach, Methodology

Abstract

A traditional criticism of scientific research in the field of education is the disconnection with teaching practice, which is due to the fragmentation of research problems. In order to solve this disconnection, instructional design research poses predictive problems that are closer to such practice, but that should be complemented with an interface providing the evaluative and normative components that are deduced from the efficient application of previous research literature. In this paper we apply some tools from the Ontosemiotic Approach (OSA) to outline a research agenda that takes into account the scientific (descriptive, explanatory and predictive) and technological (evaluative and normative) components of didactic research. We also describe the methodological tools provided by OSA to address the aforementioned problems, in particular the notion of didactic suitability that serves as a link between the scientific-technological component and the teaching practice.

Downloads

Download data is not yet available.

Author Biographies

Juan D. Godino, Universidad de Granada

Doctorado en Matemáticas por la Universidad de Granada. Profesor de la Universidad de Granada, Granada, España.

Carmen Batanero, Universidad de Granada

Doctorada en Matemáticas por la Universidad de Granada. Profesora de la Universidad de Granada, Granada, España

María Burgos, Universidad de Granada

Doctorada en Matemáticas por la Universidad de Almería y Doctorada en Didáctica de las Matemáticas por la Universidad de Granada. Profesora de la Universidad de Granada, Granada, España.

María M. Gea, Universidad de Granada

Doctorada en Didáctica de las Matemáticas por la Universidad de Granada. Profesora de la Universidad de Granada, Granada, España.

References

ARTEAGA, Pedro; BATANERO, Carmen; GEA, María Magdalena. La componente mediacional del conocimiento didáctico matemático de futuros profesores sobre Estadística: un estudio de evaluación exploratorio. Educação Matemática Debate, v.1, n. 1, p. 54-75, 2017.

ARTIGUE, Michèle. Perspectives on Design Research: The Case of Didactical Engineering. In A. BIKNER-AHSBAHS; C. KNIPPING; N. PRESMEG (Eds), Approaches to Qualitative Research in Mathematics Education. Examples of Methodology and Methods. (pp. 467-496). Springer, 2015.

BAKKER, Arthur; VAN EERDE, Dolly. An introduction to design-based research with an example from statistics education. In Angelika BIKNER-AHSBAHS; Christine KNIPPING; Norma PRESMEG (Eds.), Approaches to qualitative research in mathematics education. Examples of methodology and methods. (pp. 429-466). Springer, 2015.

BATANERO, Carmen; DÍAZ, Carmen. The meaning and understanding of mathematics. The case of probability, In Philosophical dimensions in mathematics education (pp. 107-127). Springer, Boston, M.A., 2007.

BIKNER-AHSBAHS, Angelica; KNIPPING, Christine; PRESMEG, Norma. Approaches to qualitative research in mathematics education. Examples of methodology and methods. Springer, 2015.

RUGINA, Anghel N. The problem of values and value‐judgments in science and a positive solution: Max Weber and Ludwig Wittgenstein revisited. International Journal of Social Economics, v. 25, n. 5, p. 805-854, 1998. https://doi.org/10.1108/EUM0000000004522

BREDA, Adriana; FONT, Vicenç; LIMA, Valderez Marina do Rosário. A noção de idoneidade didática e seu uso na formação de professores de matemática. Jornal Internacional de Estudos em Educação Matemática, v. 8, n. 2, p. 1-41, 2015.

BREDA, Adriana; FONT, Vicenç; y PINO-FAN, Luis. Criterios valorativos y normativos en la Didáctica de las Matemáticas: el caso del constructo idoneidad didáctica. Bolema, v. 32, n. 60, p. 255 – 278, 2018.

BROWN, Ann L. Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, v. 2, n. 2, p. 141-178, 1992.

BUNGE, Mario. Las ciencias sociales en discusión: una perspectiva filosófica. Buenos Aires, Editorial Sudamericana, 1999.

BURGOS, María; BELTRÁN-PELLICER, Pablo; GODINO, Juan D. La cuestión de la idoneidad de los vídeos educativos de matemáticas: una experiencia de análisis con futuros maestros de educación primaria. Revista Española de Pedagogía, v. 78, n. 275, p. 27-49, 2020.

BURGOS, María et al. Onto-semiotic complexity of the Definite Integral. Implications for teaching and learning Calculus. REDIMAT – Journal of Research in Mathematics Education, v. 10, n. 1, p. 4-40, 2021.

BURGOS, María y GODINO, Juan D. Modelo ontosemiótico de referencia de la proporcionalidad. Implicaciones para la planificación curricular en primaria y secundaria. AIEM, v. 18, p.1-20, 2020.

CLEMENTS, Ken. Past, present and future dimensions of mathematics education: introduction to the third international handbook of mathematics education. In Ken CLEMENTS; Alan J. BISHOP: Christine KEITEL; Jeremy KILPATRICK; Frederic K. S. LEUNG (Eds.) Third International Handbook of Mathematics Education (pp. v-ix). Springer, 2013.

COBB, Paul; GRAVEMEIJER, Koeno. Experimenting to support and understand learning processes. In Anthony E. KELLY; Richard A. LESH; John Y. BAEK (Eds.), Handbook of design research methods in education. Innovations in Science, Technology,Engineering and Mathematics Learning and Teaching (pp. 68-95). Mahwah, NJ: Lawrence Erlbaum, 2008.

COHEN, Louis; MANION, Lawrence; MORRISON, Keith. Research methods in education. Routledge, 2007.

D'AMORE, Bruno; FONT, Vicenç; GODINO, Juan D. La dimensión metadidáctica en los procesos de enseñanza y aprendizaje de las matemáticas. Paradigma, v. XXVIII, n. 2, p. 49-77, 2007.

ENGLISH, Lyn D.; KIRSHNER, David. Handbook of International Research in Mathematics Education (3rd edition). Taylor & Francis, 2016.

FELDT, Leonard S.; BRENNAN, Robert L. Reliability. In R. L. LINN (Ed.), Educational measurement (Third ed.), (pp. 263-331). New York, American Council on Education and Macmillan Publ., 1991.

FONT, Vicenç; CONTRERAS, Ángel. The problem of the particular and its relation to the general in mathematics education. Educational Studies in Mathematics, v. 69, p. 33-52, 2008.

GASCÓN, Josep; NICOLÁS, Pedro. Incidencia de los paradigmas didácticos sobre la investigación didáctica y la práctica docente. Educación Matemática, v. 33, n. 1, p.7-40, 2021.

GEA, María Magdalena; BATANERO, Carmen; ARTEAGA, Pedro; ESTEPA, Antonio. Conocimiento especializado de correlación y regresión en futuros profesores de educación secundaria. Profesorado, Revista de Currículum y Formación del Profesorado, v. 23, p. 397-416, 2019.

GIACOMONE, Belén; GODINO, Juan D.; BELTRÁN-PELLICER, Pablo. Desarrollo de la competencia de análisis de la idoneidad didáctica en futuros profesores de matemáticas. Educação e Pesquisa, v. 44, e172011, 2018.

GODINO, Juan D. Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactiques des Mathematiques, v. 22, n. (2/3), p. 237-284, 2002.

GODINO, Juan D. Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, v. 11, p. 111-132, 2013.

GODINO, Juan D. et al. Didactic engineering as design-based research in mathematics education. In Ubuz, B., Haser, C., & Mariotti, M. A. (Eds.). Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (p. 2810-2819) (CERME 8, February 6 - 10, 2013). Ankara, Turkey: Middle East Technical University and ERME, 2013. Disponible en, http://cerme8.metu.edu.tr/wgpapers/WG16/WG16_Godino.pdf

GODINO, Juan D.; BATANERO, Carmen; FONT, Vicenç. The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, v. 39, n. 1-2, p. 127-135, 2007.

GODINO, Juan D.; BATANERO, Carmen; FONT, Vicenç. The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, v. 39, n. 1, p. 37- 42, 2019.

GODINO, Juan D.; BURGOS, María. ¿Cómo enseñar las matemáticas y las ciencias experimentales? Resolviendo el dilema de la indagación y transmisión. Paradigma, v. XLI, p. 80–106, 2020.

GODINO, Juan D.; BURGOS, María; GEA, Maria Magdalena. Analysing theories of meaning in mathematics education from the onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 2021. DOI: 10.1080/0020739X.2021.1896042

GODINO, Juan D.; CONTRERAS, Ángel; FONT, Vicenç. Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. Recherches en Didactiques des Mathematiques, v. 26, n. 1, p. 39-88, 2006.

GODINO, Juan D. et al. Aproximación a la dimensión normativa en Didáctica de la Matemática desde un enfoque ontosemiótico. Enseñanza de las Ciencias, v. 27, n. 1, p. 59–76, 2009.

GODINO, Juan D. et al. Orlando. Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, v. 77, n. 2, p. 247-265, 2011.

GODINO, Juan D. et al. Ingeniería didáctica basada en el enfoque ontológico - semiótico del conocimiento y la instrucción matemáticos, Recherches en Didactique des Mathématiques, v. 34, n. 2/3, p. 167-200, 2014.

HART, Lynn C. et al. An examination of research methods in mathematics education. Journal of Mixed Methods Research, v. 3, n. 1, p. 26-41, 2009.

HENRICK, Erin; COBB, Paul; JACKSON, Kara. Educational design research to support system-wide instructional improvement. In Angelica BIKNER-AHSBAHS; Christine KNIPPING; Norma PRESMEG (Eds), Approaches to Qualitative Research in Mathematics Education. Examples of Methodology and Methods. (pp. 497-530). Springer, 2015.

HUMMES, Viviane Beatriz; FONT, Vicenç; BREDA, Adriana. Uso combinado del estudio de clases y la idoneidad didáctica para el desarrollo de la reflexión sobre la propia práctica en la formación de profesores de matemáticas. Acta Scientiae, v. 21, n. 1, p. 64-82, 2019.

INGLIS, Matthew; FOSTER, Colin. Five decades of mathematics education research. Journal for Research in Mathematics Education, v. 49, n. 4, p. 462-500, 2018.

JOHNSON, Burke; ONWUEGBUZIE, Anthony J. Mixed methods research: A research paradigm whose time has come. Educational Researcher, v. 33, n. 7, p. 14-26, 2004.

KELLY, Anthony E.; LESH, Richard A.; BAEK, John Y. (Eds.). Handbook of design research in methods in education. Innovations in science, technology, engineering, and mathematics learning and teaching. New York, NY: Routledge, 2008.

KILPATRICK, Jeremy; SWAFFORD, Jane; FINDELL, Bradford. (Eds.). Adding it up: Helping children learn mathematics. National Academy Press, 2001.

KORTHAGEN, Fred A. J. The gap between research and practice revisited. Educational Research and Evaluation, v. 13, n. 3, p. 303 – 310, 2007.

LAMPERT, Magdalene et al. Using Designed Instructional Activities to Enable Novices to Manage Ambitious Mathematics Teaching. In M. K. STEIN; L. KUCAN, (Eds), Instructional Explanations in the Disciplines (pp. 129-141). Springer, 2010.

LERMAN, Stephen. The social turn in mathematics education research. In Joan BOALER (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 19–44). Westport, CT: Ablex, 2000.

MCINTYRE, Donald. Bridging the gap between research and practice. Cambridge Journal of Education, v. 35, n. 3, p. 357–382, 2005.

MESSICK, Samuel Validity. In R. L. LINN (Ed.), Educational measurement (Third ed.), pp. 13-104). New York, American Council on Education and Macmillan Publ., 1991.

RAND MATHEMATICS STUDY PANEL. Mathematical proficiency for all students: Toward a strategic research and development program in mathematics education. Santa Monica, CA: Rand, 2003.

SCHOENFELD, Alan H. Methods. In Frank K. Lester (Ed.). Second Handbook of Research on Mathematics Teaching and Learning (pp. 66-110). NCTM & IAP (Information Age Publishing Inc.), 2007.

SNOW, Richard E.; LOHMAN, David R. Implication of cognitive psychology for educational measurement. In R. L. LINN (Ed.), Educational measurement (Third ed.), pp. 263-331, New York. American Council on Education and Macmillan Publ., 1991.

WEBB, Norman L. Assessment of student’s knowledge of mathematics: step toward a theory. In Douglas A. Grouws, (Ed.), Handbook of research on mathematics teaching and learning. New York, Macmillan, 1992.

WEBER, Max. Por qué no se deben hacer juicios de valor en la sociología y en la economía. (Trad. Abellán, J.). Madrid, Alianza Editorial, 1917/2010.

WHEELER, David. Epistemological issues and challenges to assessment: What is mathematical knowledge? In: M. NISS (Ed.), Investigations into assessment in mathematics education. An ICMI Study. Dordrecht, Kluwer A.P., 1993.

WILHELMI, Miguel R.; GODINO, Juan D.; LACASTA, Eduardo. Configuraciones epistémicas asociadas a la noción de igualdad de números reales. Recherches en Didactique des Mathematiques, v. 27, n. 1, p. 77 – 120, 2007.

VYGOTSKY, Lev S. El desarrollo de los procesos psicológicos superiores. Barcelona: Crítica-Grijalbo, 1934.

Published
2021-06-21
How to Cite
GODINO, J. D.; BATANERO, C.; BURGOS, M.; GEA, M. M. An onto-semiotic perspective of the research problems and methods in mathematics education. Revemop, v. 3, p. e202107, 21 Jun. 2021.
Section
Enfoque Ontosemiótico: abordagens teóricas, metodológicas e práticas