Exponential Functions and their Derivatives in the light of Conceptual Image and Conceptual Definition
Abstract
This article is an excerpt from a dissertation carried out with students studying Differential and Integral Calculus in the first term of the Information Systems course at the State University of Montes Claros and is based on the theoretical constructs of symbolic interactionism and advanced mathematical thinking, specifically the conceptual image and the conceptual definition of exponential functions. It aimed to understand how and in what way mathematical definitions are used in discussions held in interactions between students and professors during the students’ presentation of a seminar. From the analysis of the data, it was possible to observe divergences between the images and the conceptual definitions of exponential functions and their derivatives. We concluded that the students had made progress in understanding the formal definitions from the advanced mathematical thinking perspective.
Downloads
References
ALMEIDA, Moisés Ceni de; BARBOSA, Renata Cardoso; MUSMANNO, Leonardo Maricato; SOUZA, Natália Pedroza de. A trajetória de uma gota: um relato de experiência com estudantes de Cálculo Diferencial e Integral. Educação Matemática Debate, Montes Claros, v. 7, n. 13, p. 1–16, 2023. DOI: 10.46551/emd.v7n13a03.
AMANCIO, Daniel de Traglia; SANZOVO, Daniel Trevisan. Ensino de Matemática por meio das tecnologias digitais. Revista Educação Pública, v. 20, nº 47, 8 de dezembro de 2020. Disponível em: https://educacaopublica.cecierj.edu.br/artigos/20/47/ensino-de-matematica-por-meio-das-tecnologias-digitais. Acesso em: 07 jan. 2024.
BLUMER, Herbert. “A natureza do interacionismo simbólico”. In: MORTENSEN, C.D. Teoria da comunicação: textos básicos. São Paulo: Mosaico, 1980, pp. 119–138.
CHARMAZ, Kathy. A construção da teoria fundamentada: guia prático para análise qualitativa. Trad. Joice Elias Costa. Porto Alegre: Artmed, 2009.
DOMINGOS, Antonio. Teorias cognitivas e aprendizagem de conceitos matemáticos avançados. In: XVII Seminário de Investigação em Educação Matemática, Setúbal, 2006.
DREYFUS, Tommy. Advanced Mathematical Thinking Processes. In: TALL, David. Advanced Mathematical Thinking. Holanda: Kluwer Academic Publishers, 1991, p. 25-41.
EDWARDS, Barbara S.; WARD, Michael B. The Role of Mathematical Definitions in Mathematics and in Undergraduate Mathematics Courses. In: CARLSON, M.; RASMUSSEN, C. (Eds.). Making the Connection: Research and Teaching in Undergraduate Mathematics Education MAA Notes #73, Washington, DC: Mathematics Association of America, 2008, p. 223-232.
GUIO, Thaisa; BARCELLOS, Leandro. Elementos associados à retenção em Cálculo I: a perspectiva de estudantes do curso de Física da Universidade Federal do Espírito Santo. Revista Paranaense de Educação Matemática, Campo Mourão, v. 10, n. 22, p. 336-362, 2021. DOI: 10.33871/22385800.2021.10.22.336-362.
GODINO, Juan Díaz; LLINARES, Salvador. El interaccionismo simbólico en Educación Matemática. Revista Educación Matemática, México, D. F., v. 12, n. 1, p. 70-92, 2000.
GRANEHEIM, U. Hällgren; LUNDMAN, Bertil. "Qualitative content analysis in nursing research: Concepts, procedures and measures to achieve trustworthiness". Nurse Education Today, 24. 2004, pp. 105-112. DOI: 10.1016/j.nedt.2003.10.001.
IGLIORI, Sonia Barbosa Camargo. Considerações sobre o ensino do cálculo e um estudo sobre os números reais. In: FROTA, M. C. R.; NASSER, L. (Orgs.). Educação Matemática no Ensino Superior: Pesquisas e Debates. Recife: SBEM, 2009. p. 11-26.
MACÊDO, Josué Antunes de; GREGOR, Isabela Cristina Soares. Dificuldades nos processos de ensino e de aprendizagem de Cálculo Diferencial e Integral. Educação Matemática Debate, Montes Claros, v. 4, n. 10, p. 1–24, 2020. DOI: 10.24116/emd.e202008.
MAMONA-DOWNS, Joanna; DOWNS, Martin L. N. Advanced mathematical thinking and the role of mathematical structure. In: ENGLISH, L. (Org.). Handbook of International Research in Mathematics Education. 2. ed. New York: Routledge, 2008. p. 154-174.
MEYER, Cristina. Derivada/Reta Tangente: Imagem Conceitual e Definição Conceitual. Tese de Mestrado em Educação Matemática. PUC-SP. São Paulo, 2003.
OLIVEIRA, Saulo Macedo de. A Gincana Matemática como metodologia de ensino e aprendizagem: um Relato de Experiência à luz das teorias da Aprendizagem Significativa e Experiencial. Revista Multidisciplinar do Vale do Jequitinhonha - ReviVale, v. 3, n. 2, p. 1–15, 2023. DOI: 10.56386/2764-300x2023224.
OLIVEIRA, Saulo Macedo de; LOPES, Rieuse. O Júri Simulado como metodologia ativa no curso de Licenciatura em Matemática. Educação Matemática Debate, Montes Claros, v. 7, n. 13, p. 1–17, 2023. DOI: 10.46551/emd.v7n13a13.
OLIVEIRA, Saulo Macedo de; LOPES, Rieuse. Os Conjuntos Numéricos na perspectiva da História da Matemática em uma turma da Educação de Jovens e Adultos. Revista Baiana de Educação Matemática, v. 5, n. 1, p. e202403, 2024. DOI: 10.47207/rbem.v5i1.19570.
LOPES, Rieuse. Definições matemáticas sobre funções e suas derivadas como um eixo de discussão para o ensino e a aprendizagem do cálculo. 2014. 143f. Dissertação (Mestrado em Educação Matemática) – Universidade Federal de Ouro Preto, Ouro Preto.
ROSA, Chaiane de Medeiros, ALVARENGA, Karly Barbosa; SANTOS, Fortunato Teixeira dos Santos. Desempenho acadêmico em Cálculo Diferencial e Integral: um estudo de caso. Revista Internacional de Educação Superior, Campinas, v. 5, p. 1-16, 2019. DOI: 10.20396/riesup.v5i0.8653091.
SILVA, Abel Patrik Cantor da; NASCIMENTO, Erinaldo Ferreira do; VIEIRA, André Ricardo Lucas. Cálculo Diferencial e Integral: obstáculos e dificuldades didáticas de aprendizagem. Caminhos da Educação Matemática em Revista, Aracaju, v. 7, n. 2, p. 4-19, 2017. Disponível em: https://periodicos.ifs.edu.br/periodicos/caminhos_da_educacao_matematica/article/view/137. Acesso em: 06 jan. 2024.
STEWART, James. Cálculo. Trad. Antonio Carlos Moretti. 6. ed. São Paulo: Cengage Learning, 2010. v. 2
TALL, David. The psychology of advanced mathematical thinking. In: TALL, D. (Org.). Advanced mathematical thinking. Dordrecht: Kluwer, 1991, p. 3-21.
TALL, David. Cognitive growth in elementary and advanced mathematical thinking. In: Proceedings of 19th International Conference for the Psychology of Mathematics Education. Recife, Brasil, 1995. p. 61-75. v. I.
TALL, David; VINNER, Shlomo. Concept image and concept definition in mathematics with particular reference to limits and continuity. In: Published in Educational Studies in Mathematics. University of Warwick. 1981. p. 151–169.
VINNER, Shlomo. O papel das definições no ensino e aprendizagem de Matemática. Tradução de Márcia Maria Fusaro Pinto e Jussara de Loiola Araújo. The Role of Definitions in the Teaching and Learning of Mathematics. In: Tall, D. (Ed.) Advanced Mathematical Thinking. Dordrecht, The Netherlands: Kluwer Academic Publishers, p. 65-81, 1991.
Copyright (c) 2024 Revemop
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.